File size: 8,154 Bytes
fceb8da
 
 
035761e
 
fceb8da
 
 
 
 
 
 
788974d
035761e
fceb8da
 
788974d
fceb8da
 
 
035761e
fceb8da
788974d
fceb8da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
035761e
fceb8da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
035761e
 
fceb8da
 
035761e
 
 
 
fceb8da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
035761e
 
 
fceb8da
035761e
fceb8da
 
 
 
788974d
 
 
fceb8da
 
 
 
 
035761e
 
 
fceb8da
035761e
 
 
 
fceb8da
035761e
 
 
fceb8da
035761e
fceb8da
 
035761e
 
fceb8da
035761e
 
 
fceb8da
035761e
 
 
 
 
 
fceb8da
035761e
fceb8da
 
 
035761e
fceb8da
035761e
 
fceb8da
 
 
 
 
035761e
fceb8da
 
035761e
fceb8da
 
 
 
 
 
 
 
788974d
fceb8da
 
 
035761e
fceb8da
788974d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fceb8da
 
 
 
788974d
035761e
fceb8da
 
788974d
fceb8da
788974d
035761e
 
 
 
 
 
 
fceb8da
035761e
 
fceb8da
 
 
 
035761e
fceb8da
 
 
 
 
788974d
 
 
 
fceb8da
 
 
788974d
035761e
fceb8da
 
035761e
 
fceb8da
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import os
import torch
import yaml
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaConfig
from torch.utils.data import DataLoader, IterableDataset
from pytorch_lightning import Trainer, LightningModule
from pytorch_lightning.callbacks import (
    ModelCheckpoint,
    LearningRateMonitor,
    RichProgressBar,
)

from pytorch_lightning.loggers import TensorBoardLogger
from torch.nn.utils.rnn import pad_sequence
from lightning.pytorch.callbacks.progress.rich_progress import RichProgressBarTheme
from pytorch_lightning.callbacks import TQDMProgressBar

# Set environment variable for memory management
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"



# Function to log GPU memory usage
def log_memory_usage(step):
    if torch.cuda.is_available():
        print(
            f"Step {step}: "
            f"Allocated = {torch.cuda.memory_allocated() / 1e9:.2f} GB, "
            f"Reserved = {torch.cuda.memory_reserved() / 1e9:.2f} GB"
        )


# Custom Collate Function
def collate_fn(batch):
    input_ids = [item["input_ids"] for item in batch]
    labels = [item["labels"] for item in batch]
    input_ids = pad_sequence(
        input_ids, batch_first=True, padding_value=tokenizer.pad_token_id
    )
    labels = pad_sequence(
        labels, batch_first=True, padding_value=tokenizer.pad_token_id
    )
    return {"input_ids": input_ids, "labels": labels}


# Streaming Dataset
class StreamingDataset(IterableDataset):
    def __init__(self, dataset, tokenizer, max_length=2048):
        self.dataset = dataset
        self.tokenizer = tokenizer
        self.max_length = max_length

    def __iter__(self):
        for example in iter(self.dataset):
            tokenized = self.tokenizer(
                example["text"],
                truncation=True,
                max_length=self.max_length,
                return_overflowing_tokens=True,
                return_tensors="pt",
            )
            for chunk in tokenized["input_ids"]:
                yield {
                    "input_ids": chunk.squeeze(0),
                    "labels": chunk.squeeze(0),
                }


# Lightning Module
class SmolLMModule(LightningModule):
    def __init__(self, config, learning_rate=1e-4):
        super().__init__()
        self.config = config
        self.learning_rate = learning_rate
        self.save_hyperparameters()

        model_config = LlamaConfig(
            vocab_size=49152,
            hidden_size=config["model"]["model_config"]["hidden_size"],
            intermediate_size=config["model"]["model_config"]["intermediate_size"],
            num_hidden_layers=config["model"]["model_config"]["num_hidden_layers"],
            num_attention_heads=config["model"]["model_config"]["num_attention_heads"],
            num_key_value_heads=config["model"]["model_config"]["num_key_value_heads"],
            hidden_act=config["model"]["model_config"]["hidden_act"],
            max_position_embeddings=config["model"]["model_config"][
                "max_position_embeddings"
            ],
            initializer_range=config["model"]["model_config"]["initializer_range"],
            rms_norm_eps=1e-5,
            use_cache=True,
            pad_token_id=config["model"]["model_config"]["pad_token_id"],
            bos_token_id=config["model"]["model_config"]["bos_token_id"],
            eos_token_id=config["model"]["model_config"]["eos_token_id"],
        )
        self.model = AutoModelForCausalLM.from_config(model_config)

    def training_step(self, batch, batch_idx):
        outputs = self.model(input_ids=batch["input_ids"], labels=batch["labels"])
        loss = outputs.loss
        self.log(
            "train_loss", loss, prog_bar=True, on_step=True, on_epoch=True
        )  # Log loss

        # # Log memory usage
        # if batch_idx % 10 == 0:
        #     log_memory_usage(batch_idx)

        # Release intermediate tensors
        del outputs
        torch.cuda.empty_cache()

        return loss

    def configure_optimizers(self):
        return torch.optim.AdamW(
            self.model.parameters(),
            lr=self.learning_rate,
            betas=(0.9, 0.95),
            eps=1e-8,
            weight_decay=self.config["optimizer"]["weight_decay"],
        )


# Main Script
if __name__ == "__main__":
    # Load config
    with open("/kaggle/input/yaml-file/config_smollm2_135.yaml", "r") as file:
        config = yaml.safe_load(file)

    # Load tokenizer
    tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/cosmo2-tokenizer")
    tokenizer.pad_token = tokenizer.eos_token

    # Load dataset
    dataset = load_dataset(
        "HuggingFaceTB/smollm-corpus", "cosmopedia-v2", streaming=True
    )
    train_dataset = dataset["train"]

    # Create DataLoader
    streaming_dataset = StreamingDataset(train_dataset, tokenizer, max_length=2048)
    train_loader = DataLoader(
        streaming_dataset,
        batch_size=1,  # Reduced batch size
        num_workers=4,
        collate_fn=collate_fn,
        pin_memory=True,
    )

    # Create model
    model = SmolLMModule(
        config,
        learning_rate=config["optimizer"]["learning_rate_scheduler"]["learning_rate"],
    )

    # Initialize logger with version based on start_step
    logger = TensorBoardLogger("logs", name="smollm2")

    # Checkpoint callback configuration
    checkpoint_callback = ModelCheckpoint(
        dirpath="checkpoints",
        filename="model-{epoch:02d}-{step}-{train_loss:.2f}",  # Include training loss in filename
        monitor="train_loss",  # Monitor training loss
        mode="min",  # Lower loss is better
        save_top_k=3,  # Save the best 3 models
        save_last=True,  # Additionally save the last model
        every_n_train_steps=5000,  # Save every 500 steps
        save_weights_only=False,  # Save the full model state
        auto_insert_metric_name=False,  # Don't insert metric name in filename
    )

    # Progress bar
    # progress_bar = RichProgressBar(
    #     refresh_rate=1,
    #     leave=False,
    #     theme=RichProgressBarTheme(
    #         description="",
    #         progress_bar="#6206E0",
    #         progress_bar_finished="#6206E0",
    #         progress_bar_pulse="#6206E0",
    #         batch_progress="",
    #         time="dim",
    #         processing_speed="dim underline",
    #         metrics="italic",
    #         metrics_text_delimiter=" ",
    #         metrics_format=".3f",
    #     ),
    #     console_kwargs=None,
    # )
    progress_bar = TQDMProgressBar(refresh_rate=10)

    # Create trainer
    trainer = Trainer(
        logger=logger,
        strategy="ddp_notebook",
        accelerator="gpu",
        devices=2,
        precision="16-mixed",
        max_steps=500000,
        accumulate_grad_batches=1,
        enable_checkpointing = True,
        callbacks=[
            LearningRateMonitor(logging_interval="step"),
            progress_bar,
            checkpoint_callback,
        ],
        enable_progress_bar=True,
        enable_model_summary=True,
        log_every_n_steps=10,
    )

    # Find latest checkpoint if exists
    if os.path.exists("checkpoints/last.ckpt"):
        resume_from_checkpoint = "checkpoints/last.ckpt"
        print(f"Resuming from checkpoint: {resume_from_checkpoint}")
    else:
        resume_from_checkpoint = None
        print("Starting training from scratch")

    # Train with automatic checkpoint resumption
    trainer.fit(model, train_loader, ckpt_path=resume_from_checkpoint)
    optimizers = trainer.optimizers
    if optimizers:
        optimizer = optimizers[0]
        print("optimizer state:",optimizer.state_dict())

    # After training, print the best model path and score
    print(f"Best model path: {checkpoint_callback.best_model_path}")
    # print(f"Best train loss: {checkpoint_callback.best_model_score:.4f}")

    # Save final model
    if trainer.is_global_zero:
        output_dir = "final_model"
        os.makedirs(output_dir, exist_ok=True)
        model.model.save_pretrained(output_dir)
        tokenizer.save_pretrained(output_dir)