Spaces:
Running
Running
import os | |
import gradio as gr | |
import torch | |
from model import SmolLMModule | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import yaml | |
import glob | |
# Load config | |
with open("config_smollm2_135.yaml", "r") as file: | |
config = yaml.safe_load(file) | |
# Load tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/cosmo2-tokenizer") | |
tokenizer.pad_token = tokenizer.eos_token | |
def get_available_checkpoints(): | |
"""Get list of available checkpoints and final model""" | |
models = [] | |
model_paths = {} | |
# Get checkpoints | |
checkpoints = glob.glob("checkpoints/*.ckpt") | |
for ckpt in checkpoints: | |
try: | |
# Extract step number from the filename | |
filename = os.path.basename(ckpt) | |
# Handle the format 'model-step=step=X.ckpt' | |
if "step=step=" in filename: | |
step = int(filename.split("step=step=")[1].split(".")[0]) | |
display_name = f"Checkpoint Step {step}" | |
models.append(display_name) | |
model_paths[display_name] = ckpt | |
except (ValueError, IndexError) as e: | |
print( | |
f"Warning: Could not parse checkpoint filename: {filename}, Error: {e}" | |
) | |
continue | |
# Add final model if it exists | |
final_model_path = "final_model" | |
if os.path.exists(final_model_path): | |
display_name = "Final Model" | |
models.append(display_name) | |
model_paths[display_name] = final_model_path | |
# Sort checkpoints by step number (Final model will be at the end) | |
def get_step_number(name): | |
if name == "Final Model": | |
return float("inf") | |
try: | |
return int(name.split("Step ")[-1]) | |
except: | |
return 0 | |
models.sort(key=get_step_number) | |
if not models: | |
print( | |
"Warning: No checkpoints or final model found in the following locations:" | |
) | |
print("- Checkpoints directory:", os.path.abspath("checkpoints")) | |
print("- Final model directory:", os.path.abspath("final_model")) | |
else: | |
print(f"Found {len(models)} models:") | |
for model in models: | |
print(f"- {model}: {model_paths[model]}") | |
return models, model_paths | |
def load_model_from_checkpoint(model_path): | |
"""Load model from checkpoint or final model directory""" | |
if model_path == "final_model": | |
# Load the final saved model | |
model = SmolLMModule(config) | |
model.model = AutoModelForCausalLM.from_pretrained(model_path) | |
else: | |
# Load from checkpoint | |
model = SmolLMModule.load_from_checkpoint(model_path, config=config) | |
model.eval() # Set to evaluation mode | |
return model | |
def generate_text(prompt, model_choice, max_length=100, temperature=0.7, top_p=0.9): | |
"""Generate text based on prompt using selected model""" | |
# Check if model is selected | |
if not model_choice: | |
return "Please select a model checkpoint!" | |
if not prompt: | |
return "Please enter a prompt!" | |
try: | |
# Get model path from the mapping | |
_, model_paths = get_available_checkpoints() | |
model_path = model_paths.get(model_choice) | |
if not model_path or not os.path.exists(model_path): | |
return f"Model {model_choice} not found!" | |
# Load model | |
model = load_model_from_checkpoint(model_path) | |
# Move model to GPU if available | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = model.to(device) | |
# Tokenize input | |
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True) | |
# Move inputs to same device as model | |
inputs = {k: v.to(device) for k, v in inputs.items()} | |
# Generate | |
with torch.no_grad(): | |
outputs = model.model.generate( | |
inputs["input_ids"], | |
max_length=max_length, | |
temperature=temperature, | |
top_p=top_p, | |
pad_token_id=tokenizer.pad_token_id, | |
eos_token_id=tokenizer.eos_token_id, | |
) | |
# Decode and return generated text | |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return generated_text | |
except Exception as e: | |
return f"Error during generation: {str(e)}" | |
# Get available models | |
display_names, _ = get_available_checkpoints() | |
# Create Gradio interface | |
with gr.Blocks(title="SmolLM2 Inference") as demo: | |
gr.Markdown("# SmolLM2 Text Generation") | |
if not display_names: | |
gr.Markdown("⚠️ No models found! Please train the model first.") | |
else: | |
gr.Markdown( | |
f"Found {len(display_names)} models/checkpoints. Select one and enter a prompt to generate text." | |
) | |
gr.Markdown("Available models: " + ", ".join(display_names)) | |
with gr.Row(): | |
with gr.Column(): | |
model_dropdown = gr.Dropdown( | |
choices=display_names, | |
label="Select Model", | |
value=display_names[-1] if display_names else None, | |
interactive=True, | |
) | |
prompt = gr.Textbox( | |
lines=3, placeholder="Enter your prompt here...", label="Input Prompt" | |
) | |
max_length = gr.Slider( | |
minimum=10, maximum=500, value=100, step=10, label="Max Length" | |
) | |
temperature = gr.Slider( | |
minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature" | |
) | |
top_p = gr.Slider( | |
minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p" | |
) | |
generate_btn = gr.Button("Generate") | |
with gr.Column(): | |
output = gr.Textbox(lines=8, label="Generated Text") | |
generate_btn.click( | |
fn=generate_text, | |
inputs=[prompt, model_dropdown, max_length, temperature, top_p], | |
outputs=output, | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) | |