smollm2 / config_smollm2_135.yaml
Vibi007's picture
first commit
035761e
checkpoints:
checkpoint_interval: 2000
checkpoints_path: checkpoints
checkpoints_path_is_shared_file_system: false
resume_checkpoint_path: null
save_final_state: false
save_initial_state: false
data_stages:
- data:
dataset:
dataset_folder:
- datasets/smollm2-corpus
dataset_weights:
- 1.0
num_loading_workers: 0
seed: 8
name: stable phase
start_training_step: 1
general:
benchmark_csv_path: null
consumed_train_samples: null
ignore_sanity_checks: true
project: smollm2
run: smollm2-135M
seed: 8
step: null
logging:
iteration_step_info_interval: 1
log_level: info
log_level_replica: info
model:
ddp_bucket_cap_mb: 25
dtype: bfloat16
init_method:
std: 0.041666666666666664
make_vocab_size_divisible_by: 1
model_config:
bos_token_id: 0
eos_token_id: 0
hidden_act: silu
hidden_size: 576
initializer_range: 0.041666666666666664
intermediate_size: 1536
is_llama_config: true
max_position_embeddings: 2048
num_attention_heads: 9
num_hidden_layers: 30
num_key_value_heads: 3
pad_token_id: null
pretraining_tp: 1
rms_norm_eps: 1.0e-05
rope_interleaved: false
rope_scaling: null
rope_theta: 10000.0
tie_word_embeddings: true
use_cache: true
vocab_size: 49152
optimizer:
accumulate_grad_in_fp32: true
clip_grad: 1.0
learning_rate_scheduler:
learning_rate: 0.003
lr_decay_starting_step: 1600000
lr_decay_steps: 400000
lr_decay_style: linear
lr_warmup_steps: 2000
lr_warmup_style: linear
min_decay_lr: 0
optimizer_factory:
adam_beta1: 0.9
adam_beta2: 0.95
adam_eps: 1.0e-08
name: adamW
torch_adam_is_fused: true
weight_decay: 0.01
zero_stage: 0
parallelism:
dp: 64
expert_parallel_size: 1
pp: 1
pp_engine: 1f1b
recompute_layer: false
tp: 1
tp_linear_async_communication: true
tp_mode: REDUCE_SCATTER
tp_recompute_allgather: true
profiler: null
tokenizer:
tokenizer_max_length: null
tokenizer_name_or_path: HuggingFaceTB/cosmo2-tokenizer
tokenizer_revision: null
tokens:
batch_accumulation_per_replica: 1
limit_test_batches: 0
limit_val_batches: 0
micro_batch_size: 8
sequence_length: 2048
train_steps: 2000000
val_check_interval: 1000
# model:
# LlamaForCausalLM(
# (model): LlamaModel(
# (embed_tokens): Embedding(49152, 576)
# (layers): ModuleList(
# (0-29): 30 x LlamaDecoderLayer(
# (self_attn): LlamaAttention(
# (q_proj): Linear(in_features=576, out_features=576, bias=False)
# (k_proj): Linear(in_features=576, out_features=192, bias=False)
# (v_proj): Linear(in_features=576, out_features=192, bias=False)
# (o_proj): Linear(in_features=576, out_features=576, bias=False)
# )
# (mlp): LlamaMLP(
# (gate_proj): Linear(in_features=576, out_features=1536, bias=False)
# (up_proj): Linear(in_features=576, out_features=1536, bias=False)
# (down_proj): Linear(in_features=1536, out_features=576, bias=False)
# (act_fn): SiLU()
# )
# (input_layernorm): LlamaRMSNorm((576,), eps=1e-05)
# (post_attention_layernorm): LlamaRMSNorm((576,), eps=1e-05)
# )
# )
# (norm): LlamaRMSNorm((576,), eps=1e-05)
# (rotary_emb): LlamaRotaryEmbedding()
# )
# (lm_head): Linear(in_features=576, out_features=49152, bias=False)
# )