checkpoints: checkpoint_interval: 2000 checkpoints_path: checkpoints checkpoints_path_is_shared_file_system: false resume_checkpoint_path: null save_final_state: false save_initial_state: false data_stages: - data: dataset: dataset_folder: - datasets/smollm2-corpus dataset_weights: - 1.0 num_loading_workers: 0 seed: 8 name: stable phase start_training_step: 1 general: benchmark_csv_path: null consumed_train_samples: null ignore_sanity_checks: true project: smollm2 run: smollm2-135M seed: 8 step: null logging: iteration_step_info_interval: 1 log_level: info log_level_replica: info model: ddp_bucket_cap_mb: 25 dtype: bfloat16 init_method: std: 0.041666666666666664 make_vocab_size_divisible_by: 1 model_config: bos_token_id: 0 eos_token_id: 0 hidden_act: silu hidden_size: 576 initializer_range: 0.041666666666666664 intermediate_size: 1536 is_llama_config: true max_position_embeddings: 2048 num_attention_heads: 9 num_hidden_layers: 30 num_key_value_heads: 3 pad_token_id: null pretraining_tp: 1 rms_norm_eps: 1.0e-05 rope_interleaved: false rope_scaling: null rope_theta: 10000.0 tie_word_embeddings: true use_cache: true vocab_size: 49152 optimizer: accumulate_grad_in_fp32: true clip_grad: 1.0 learning_rate_scheduler: learning_rate: 0.003 lr_decay_starting_step: 1600000 lr_decay_steps: 400000 lr_decay_style: linear lr_warmup_steps: 2000 lr_warmup_style: linear min_decay_lr: 0 optimizer_factory: adam_beta1: 0.9 adam_beta2: 0.95 adam_eps: 1.0e-08 name: adamW torch_adam_is_fused: true weight_decay: 0.01 zero_stage: 0 parallelism: dp: 64 expert_parallel_size: 1 pp: 1 pp_engine: 1f1b recompute_layer: false tp: 1 tp_linear_async_communication: true tp_mode: REDUCE_SCATTER tp_recompute_allgather: true profiler: null tokenizer: tokenizer_max_length: null tokenizer_name_or_path: HuggingFaceTB/cosmo2-tokenizer tokenizer_revision: null tokens: batch_accumulation_per_replica: 1 limit_test_batches: 0 limit_val_batches: 0 micro_batch_size: 8 sequence_length: 2048 train_steps: 2000000 val_check_interval: 1000 # model: # LlamaForCausalLM( # (model): LlamaModel( # (embed_tokens): Embedding(49152, 576) # (layers): ModuleList( # (0-29): 30 x LlamaDecoderLayer( # (self_attn): LlamaAttention( # (q_proj): Linear(in_features=576, out_features=576, bias=False) # (k_proj): Linear(in_features=576, out_features=192, bias=False) # (v_proj): Linear(in_features=576, out_features=192, bias=False) # (o_proj): Linear(in_features=576, out_features=576, bias=False) # ) # (mlp): LlamaMLP( # (gate_proj): Linear(in_features=576, out_features=1536, bias=False) # (up_proj): Linear(in_features=576, out_features=1536, bias=False) # (down_proj): Linear(in_features=1536, out_features=576, bias=False) # (act_fn): SiLU() # ) # (input_layernorm): LlamaRMSNorm((576,), eps=1e-05) # (post_attention_layernorm): LlamaRMSNorm((576,), eps=1e-05) # ) # ) # (norm): LlamaRMSNorm((576,), eps=1e-05) # (rotary_emb): LlamaRotaryEmbedding() # ) # (lm_head): Linear(in_features=576, out_features=49152, bias=False) # )