Spaces:
Sleeping
Sleeping
import torch | |
from PIL import Image | |
import numpy as np | |
import streamlit as st | |
from ultralytics import YOLO | |
# Load YOLOv10 model | |
model = YOLO('best.pt') # Load the pre-trained model | |
# Streamlit App | |
st.title("YOLO Object Detection with Confidence Threshold") | |
st.sidebar.title("Options") | |
st.sidebar.markdown("Upload an image to detect objects.") | |
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) | |
if uploaded_file: | |
# Load the image | |
image = Image.open(uploaded_file).convert('RGB') | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
# Perform inference with a confidence threshold of 0.25 | |
st.write("Detecting objects with confidence threshold of 0.25...") | |
results = model.predict(source=image, conf=0.25, save=False) # Directly pass PIL image | |
# Annotate and display the image | |
annotated_image = results[0].plot() # Get annotated image with bounding boxes | |
st.image(annotated_image, caption="Detected Objects", use_column_width=True) | |
# Show raw predictions | |
st.write("Detection Results:") | |
for result in results: | |
for box in result.boxes: | |
class_id = int(box.cls) # Convert to Python int | |
confidence = float(box.conf) # Convert to Python float | |
bbox = box.xyxy.tolist() # Bounding box coordinates as a list | |
st.write( | |
f"Class: {class_id}, Confidence: {confidence:.2f}, Box: {bbox}" | |
) | |
st.sidebar.info("Developed using YOLO") | |