import pprint import subprocess from threading import Thread import gradio as gr from optimum.intel.openvino import OVModelForCausalLM from transformers import AutoTokenizer, TextIteratorStreamer result = subprocess.run(["lscpu"], text=True, capture_output=True) pprint.pprint(result.stdout) original_model_id = "mistralai/Mistral-7B-Instruct-v0.2" model_id = "helenai/mistralai-Mistral-7B-Instruct-v0.2-ov" model = OVModelForCausalLM.from_pretrained(model_id) tokenizer = AutoTokenizer.from_pretrained(model_id) def run_generation(user_text, top_p, temperature, top_k, max_new_tokens): # message = [{"role": "user", "content": "You are a helpful assistant"}, {"role": "assistant", "content": "How can I help?"}, {"role":"user", "content":user_text}] message = [{"role": "user", "content": user_text}] model_inputs = tokenizer.apply_chat_template(message, return_tensors="pt", return_dict=True) # Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer # in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread. streamer = TextIteratorStreamer( tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True ) generate_kwargs = dict( model_inputs, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, temperature=float(temperature), top_k=top_k, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() # Pull the generated text from the streamer, and update the model output. model_output = "" for new_text in streamer: model_output += new_text yield model_output return model_output def reset_textbox(): return gr.update(value="") with gr.Blocks() as demo: original_link = "https://huggingface.co/spaces/joaogante/transformers_streaming" gr.Markdown( "# OpenVINO and 🤗 Transformers 🔥Streaming🔥 on Gradio\n" "This demo showcases the use of the " "[streaming feature](https://huggingface.co/docs/transformers/main/en/generation_strategies#streaming) " "of 🤗 Transformers with OpenVINO models and Gradio to generate text in real-time. It uses " f"[{original_model_id}](https://huggingface.co/{original_model_id}), " "converted to OpenVINO.\n\n" f"This space was duplicated from {original_link} and modified for OpenVINO models." ) with gr.Row(): with gr.Column(scale=4): user_text = gr.Textbox( label="User input", ) model_output = gr.Textbox(label="Model output", lines=10, interactive=False) button_submit = gr.Button(value="Submit") with gr.Column(scale=1): max_new_tokens = gr.Slider( minimum=1, maximum=1000, value=250, step=1, interactive=True, label="Max New Tokens", ) top_p = gr.Slider( minimum=0.05, maximum=1.0, value=0.95, step=0.05, interactive=True, label="Top-p (nucleus sampling)", ) top_k = gr.Slider( minimum=1, maximum=50, value=50, step=1, interactive=True, label="Top-k", ) temperature = gr.Slider( minimum=0.1, maximum=5.0, value=0.8, step=0.1, interactive=True, label="Temperature", ) user_text.submit( run_generation, [user_text, top_p, temperature, top_k, max_new_tokens], model_output, ) button_submit.click( run_generation, [user_text, top_p, temperature, top_k, max_new_tokens], model_output, ) demo.queue(max_size=32).launch(enable_queue=True, server_name="0.0.0.0") # For local use: # demo.launch(server_name="0.0.0.0")