HEMANTH commited on
Commit
9715f6d
·
1 Parent(s): a92823f

added all files from existing github repo

Browse files
Files changed (4) hide show
  1. app.py +74 -0
  2. movie_names.pkl +3 -0
  3. requirements.txt +6 -0
  4. similarity.pkl +3 -0
app.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pickle
2
+ import streamlit as st
3
+ import requests
4
+ import pandas as pd
5
+
6
+ def fetch_poster(movie_id):
7
+ # url = "https://api.themoviedb.org/3/movie/{}?api_key=8fe6f2aa0e5d863d7fd4dc7994cfbce9&language=en-US".format(movie_id)
8
+ # data = requests.get(url)
9
+ #st.write(movie_id)
10
+ url = "https://api.themoviedb.org/3/movie/{}?language=en-US".format(movie_id)
11
+ headers = {
12
+ "accept": "application/json",
13
+ "Authorization": "Bearer eyJhbGciOiJIUzI1NiJ9.eyJhdWQiOiI4ZmU2ZjJhYTBlNWQ4NjNkN2ZkNGRjNzk5NGNmYmNlOSIsIm5iZiI6MTcyMDk0MzA0MC41MTQyMDgsInN1YiI6IjY2OGY3NzQ2OGUzOWM5YzlmMjEwZWQxOSIsInNjb3BlcyI6WyJhcGlfcmVhZCJdLCJ2ZXJzaW9uIjoxfQ.zYIfFcNM8Y_Z33JOczRQO8PBoU-RlkoFQeFyAiqkLpw"
14
+ }
15
+
16
+ data = response = requests.get(url, headers=headers)
17
+ #st.write(data)
18
+ data = data.json()
19
+ #st.write(data)
20
+ poster_path = data['poster_path']
21
+ # print(response.text)
22
+ full_path = "https://image.tmdb.org/t/p/w500/" + poster_path
23
+ return full_path
24
+
25
+ def recommend(movie):
26
+ index = movies[movies['title'] == movie].index[0]
27
+ # index = 385
28
+ distances = sorted(list(enumerate(similarity[index])), reverse=True, key=lambda x: x[1])
29
+ recommended_movie_names = []
30
+ recommended_movie_posters = []
31
+ for i in distances[1:6]:
32
+ # fetch the movie poster
33
+ movie_id = movies.iloc[i[0]].id
34
+ recommended_movie_posters.append(fetch_poster(movie_id))
35
+ recommended_movie_names.append(movies.iloc[i[0]].title)
36
+
37
+ return recommended_movie_names,recommended_movie_posters
38
+
39
+
40
+ st.header('Movie Recommender System')
41
+ movies = pickle.load(open('movie_names.pkl','rb'))
42
+ movies = pd.DataFrame(movies)
43
+ similarity = pickle.load(open('similarity.pkl','rb'))
44
+
45
+ movie_list = movies['title'].values
46
+ selected_movie = st.selectbox(
47
+ "Type or select a movie from the dropdown",
48
+ movie_list
49
+ )
50
+ print(selected_movie)
51
+ if st.button('Show Recommendation'):
52
+ recommended_movie_names,recommended_movie_posters = recommend(selected_movie)
53
+ col1, col2, col3, col4, col5 = st.columns(5)
54
+ with col1:
55
+ st.text(recommended_movie_names[0])
56
+ st.image(recommended_movie_posters[0])
57
+ with col2:
58
+ st.text(recommended_movie_names[1])
59
+ st.image(recommended_movie_posters[1])
60
+
61
+ with col3:
62
+ st.text(recommended_movie_names[2])
63
+ st.image(recommended_movie_posters[2])
64
+ with col4:
65
+ st.text(recommended_movie_names[3])
66
+ st.image(recommended_movie_posters[3])
67
+ with col5:
68
+ st.text(recommended_movie_names[4])
69
+ st.image(recommended_movie_posters[4])
70
+
71
+
72
+
73
+
74
+
movie_names.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa45385b2529ad9a788b2749bf1404c63bfa982e84a4b474dda229160265e282
3
+ size 5033528
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ streamlit
2
+ numpy
3
+ pickleshare
4
+ requests
5
+ pandas
6
+ protobuf==3.19.1
similarity.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d207507ed609ded5ddc22b24ef51a51efbe728517b3ad2d78e4b75b976e9905
3
+ size 184781251