vyayamam / main.py
HEMANTH
only login sys
c3d5eeb
import cv2
import mediapipe as mp
import numpy as np
import streamlit as st
from PIL import Image
# Initialize Mediapipe Pose
mp_pose = mp.solutions.pose
mp_drawing = mp.solutions.drawing_utils
# Function to calculate the angle between three points
def calculate_angle(a, b, c):
a = np.array(a) # First point
b = np.array(b) # Middle point
c = np.array(c) # Last point
radians = np.arctan2(c[1] - b[1], c[0] - b[0]) - np.arctan2(a[1] - b[1], a[0] - b[0])
angle = np.abs(radians * 180.0 / np.pi)
if angle > 180.0:
angle = 360 - angle
return angle
# Function to check shoulder press posture
def is_shoulder_press_correct(landmarks, mp_pose):
# Get coordinates of shoulder, elbow, and wrist (left arm as example)
shoulder = [landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y]
elbow = [landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].y]
wrist = [landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x,
landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y]
# Calculate angle at the elbow (shoulder, elbow, wrist)
elbow_angle = calculate_angle(shoulder, elbow, wrist)
# Check if the motion is vertical (wrist higher than elbow)
if wrist[1] < elbow[1] and elbow[1] < shoulder[1]:
# Ensure proper angle range for a shoulder press
if 160 <= elbow_angle <= 180:
return "Shoulder Press: Correct", (0, 255, 0) # Green for correct
else:
return "Shoulder Press: Incorrect - Elbow angle", (0, 255, 255) # Yellow for improper angle
else:
return "Shoulder Press: Incorrect - Alignment", (255, 0, 0) # Red for alignment issue
# Streamlit App
st.title("Shoulder Press Detection Web App")
# Upload video file
uploaded_file = st.file_uploader("Upload a video file", type=["mp4", "avi"])
if uploaded_file is not None:
# Save uploaded video to a temporary location
temp_video_path = "uploaded_video.mp4"
with open(temp_video_path, "wb") as f:
f.write(uploaded_file.read())
# Open video with OpenCV
cap = cv2.VideoCapture(temp_video_path)
stframe = st.empty()
with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Convert the frame to RGB
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image.flags.writeable = False
# Process the image for pose detection
results = pose.process(image)
# Convert back to BGR for rendering
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# Extract landmarks
if results.pose_landmarks:
landmarks = results.pose_landmarks.landmark
# Check shoulder press posture
feedback, color = is_shoulder_press_correct(landmarks, mp_pose)
# Display feedback
cv2.putText(image, feedback, (50, 50),
cv2.FONT_HERSHEY_SIMPLEX, 1, color, 2, cv2.LINE_AA)
# Draw landmarks
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS)
else:
# Warn if no landmarks are detected
cv2.putText(image, "No body detected", (50, 50),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv2.LINE_AA)
# Resize frame for Streamlit
resized_frame = cv2.resize(image, (640, 480))
frame_rgb = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2RGB)
stframe.image(frame_rgb, channels="RGB")
cap.release()