Spaces:
Running
on
Zero
Running
on
Zero
File size: 36,930 Bytes
cb26acc e406312 e9b69d2 e273309 e9b69d2 76f722d e9b69d2 7c600ad 8ab445f e1f0af6 e9b69d2 d989475 c8ab947 d989475 c8ab947 d989475 c8ab947 d989475 c8ab947 e406312 c8ab947 e9b69d2 b7cfba0 e9b69d2 b7cfba0 e9b69d2 e1f0af6 73a19a6 b3e0d41 e1f0af6 e9b69d2 61044da 22f4889 44aaf39 dd3c146 f3d4c6b 61044da dd3c146 f3d4c6b 61044da dd3c146 5895ac2 dd3c146 5895ac2 8c17d76 61044da 44aaf39 e673bfc 9e3a2ff 9386491 dd3c146 40576c0 9386491 44aaf39 61044da 0662719 eff6dd2 a710a8c 343970c e673bfc e9b69d2 7c600ad e9b69d2 c1057fc f5504a3 c1057fc f5504a3 65d171f f5504a3 d4182d8 7c600ad f5504a3 7c600ad e673bfc e9b69d2 24f33ad dd3b355 f3d4c6b 343970c 85cde2d dd3b355 e9b69d2 7c600ad d989475 e9b69d2 6e3cc06 e392146 6e3cc06 e392146 e9b69d2 6ee662e e99077e f5504a3 e9b69d2 d989475 e9b69d2 d989475 e9b69d2 7c600ad e9b69d2 7c600ad d989475 7c600ad d989475 6ee662e 6766b80 730e1c5 d01e985 e273309 784c478 123602a d01e985 c0b0012 e392146 e99077e 6e3cc06 bb3b6bc f5504a3 730e1c5 d01e985 6c65795 7c600ad 6766b80 46c7c53 e99077e 7c600ad 46c7c53 6ee662e 46c7c53 6ee662e 7c600ad b79287b 46c7c53 6459fb3 6ee662e 46c7c53 faf4f74 46c7c53 784c478 faf4f74 e9b69d2 9b9ab2a 7a398c4 b7cfba0 088e714 b7cfba0 7a398c4 9d136e9 b7cfba0 7a398c4 c0b0012 2dbd805 790ff04 7915f44 790ff04 088e714 790ff04 8e1f0c1 790ff04 b7cfba0 7a398c4 33c82d2 7a398c4 b7cfba0 088e714 aea9a62 b7cfba0 dfe9546 2dbd805 722ea03 e406312 015d0ec 2dbd805 015d0ec 89c0cd0 088e714 1d4f2a6 015d0ec 1d4f2a6 dfe9546 b7cfba0 7a398c4 aea9a62 b7cfba0 7c600ad e9b69d2 b7cfba0 7b74eba f5504a3 7b74eba e9b69d2 7c600ad e9b69d2 7c600ad e9b69d2 9b9ab2a bbacd9b 1d70068 7c600ad 1b8e47a b79287b 0983170 d01e985 e9b69d2 7c600ad 6ee662e f5504a3 7c600ad 9b9ab2a 7c600ad d989475 7c600ad d989475 7c600ad d989475 7c600ad d989475 6ee662e d989475 7c600ad e673bfc 7c600ad e673bfc 7c600ad d01e985 ec17809 7c600ad f5504a3 d01e985 e273309 f5b65ab 6459fb3 cb26acc b9e1a6e 7c600ad d989475 6ee662e d989475 6ee662e 7c600ad b79287b 76f722d 6459fb3 6ee662e 6459fb3 f5b65ab 7c600ad 6459fb3 5e9cc13 784c478 5e9cc13 6459fb3 7c600ad 76f722d a2e0f11 7c600ad 8f2bb3e 7b74eba c58ae3a 7b74eba f5504a3 7b74eba a385437 7b74eba 7c600ad d989475 7c600ad 6459fb3 bbacd9b d01e985 e273309 2e67085 c58ae3a 6459fb3 23bc8a9 7c600ad 6ee662e 7c600ad d01e985 23bc8a9 7c600ad 8fe5320 5e9cc13 b7cfba0 8fe5320 7b74eba 2986a1b e406312 7b74eba 2986a1b 766aec1 7b74eba 2986a1b 7b74eba 8f2bb3e 61044da 8fe5320 1cc7378 8fe5320 7b74eba 2611f4f 1459ac2 a47d4bd 1459ac2 4b9083a 0b561c5 4b9083a 0b561c5 4b9083a 0b561c5 4b9083a 480b27e 4b9083a 0b561c5 4b9083a 343970c 4b9083a 0b561c5 1459ac2 766aec1 5e9cc13 e406312 088e714 b7cfba0 7a398c4 e83f557 2dbd805 b7cfba0 e392146 63bc064 e392146 6d0a9b0 6ee662e 2611f4f 6d0a9b0 f5504a3 9ea675a 766aec1 f5504a3 9ea675a 46c7c53 f7f0d54 766aec1 f5504a3 9ea675a 46c7c53 766aec1 f5504a3 9ea675a 46c7c53 5e9cc13 9b9ab2a b7cfba0 a9aeff7 b7cfba0 33c82d2 c99d9bd b7cfba0 995a112 4bc1d31 b7cfba0 7c600ad ae5125c 7c600ad e9b69d2 d390b7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 |
from datetime import datetime
from hashlib import sha256
from huggingface_hub import snapshot_download
from katsu import Katsu
from models import build_model
import gradio as gr
import librosa
import numpy as np
import os
import phonemizer
import pypdf
import random
import re
import spaces
import subprocess
import torch
import yaml
CUDA_AVAILABLE = torch.cuda.is_available()
snapshot = snapshot_download(repo_id='hexgrad/kokoro', allow_patterns=['*.pt', '*.pth', '*.yml'], use_auth_token=os.environ['TOKEN'])
config = yaml.safe_load(open(os.path.join(snapshot, 'config.yml')))
models = {device: build_model(config['model_params'], device) for device in ['cpu'] + (['cuda'] if CUDA_AVAILABLE else [])}
for key, state_dict in torch.load(os.path.join(snapshot, 'net.pth'), map_location='cpu', weights_only=True)['net'].items():
for device in models:
assert key in models[device], key
try:
models[device][key].load_state_dict(state_dict)
except:
state_dict = {k[7:]: v for k, v in state_dict.items()}
models[device][key].load_state_dict(state_dict, strict=False)
PARAM_COUNT = sum(p.numel() for value in models['cpu'].values() for p in value.parameters())
assert PARAM_COUNT < 82_000_000, PARAM_COUNT
with open(os.path.join(snapshot, 'net.pth'), 'rb') as rb:
model_hash = sha256(rb.read()).hexdigest()
print('model_hash', model_hash)
# SHA256 hash matches https://huggingface.co/hexgrad/Kokoro-82M/blob/main/kokoro-v0_19.pth
assert model_hash == '3b0c392f87508da38fad3a2f9d94c359f1b657ebd2ef79f9d56d69503e470b0a'
random_texts = {}
for lang in ['en', 'fr', 'ja', 'ko', 'zh']:
with open(f'{lang}.txt', 'r') as r:
random_texts[lang] = [line.strip() for line in r]
def get_random_text(voice):
lang = dict(a='en', b='en', f='fr', j='ja', k='ko', z='zh')[voice[0]]
return random.choice(random_texts[lang])
sents = set()
for txt in {'harvard_sentences', 'llama3_command-r_sentences_1st_person', 'llama3_command-r_sentences_excla', 'llama3_command-r_questions'}:
txt += '.txt'
subprocess.run(['wget', f'https://huggingface.co/spaces/Pendrokar/TTS-Spaces-Arena/resolve/main/{txt}'])
with open(txt, 'r') as r:
sents.update(r.read().strip().splitlines())
print('len(sents)', len(sents))
def parens_to_angles(s):
return s.replace('(', '«').replace(')', '»')
def split_num(num):
num = num.group()
if '.' in num:
return num
elif ':' in num:
h, m = [int(n) for n in num.split(':')]
if m == 0:
return f"{h} o'clock"
elif m < 10:
return f'{h} oh {m}'
return f'{h} {m}'
year = int(num[:4])
if year < 1100 or year % 1000 < 10:
return num
left, right = num[:2], int(num[2:4])
s = 's' if num.endswith('s') else ''
if 100 <= year % 1000 <= 999:
if right == 0:
return f'{left} hundred{s}'
elif right < 10:
return f'{left} oh {right}{s}'
return f'{left} {right}{s}'
def flip_money(m):
m = m.group()
bill = 'dollar' if m[0] == '$' else 'pound'
if m[-1].isalpha():
return f'{m[1:]} {bill}s'
elif '.' not in m:
s = '' if m[1:] == '1' else 's'
return f'{m[1:]} {bill}{s}'
b, c = m[1:].split('.')
s = '' if b == '1' else 's'
c = int(c.ljust(2, '0'))
coins = f"cent{'' if c == 1 else 's'}" if m[0] == '$' else ('penny' if c == 1 else 'pence')
return f'{b} {bill}{s} and {c} {coins}'
def point_num(num):
a, b = num.group().split('.')
return ' point '.join([a, ' '.join(b)])
def normalize_text(text, lang):
text = text.replace(chr(8216), "'").replace(chr(8217), "'")
text = text.replace('«', chr(8220)).replace('»', chr(8221))
text = text.replace(chr(8220), '"').replace(chr(8221), '"')
text = parens_to_angles(text)
for a, b in zip('、。!,:;?', ',.!,:;?'):
text = text.replace(a, b+' ')
text = re.sub(r'[^\S \n]', ' ', text)
text = re.sub(r' +', ' ', text)
text = re.sub(r'(?<=\n) +(?=\n)', '', text)
if lang == 'j':
return text.strip()
text = re.sub(r'\bD[Rr]\.(?= [A-Z])', 'Doctor', text)
text = re.sub(r'\b(?:Mr\.|MR\.(?= [A-Z]))', 'Mister', text)
text = re.sub(r'\b(?:Ms\.|MS\.(?= [A-Z]))', 'Miss', text)
text = re.sub(r'\b(?:Mrs\.|MRS\.(?= [A-Z]))', 'Mrs', text)
text = re.sub(r'\betc\.(?! [A-Z])', 'etc', text)
text = re.sub(r'(?i)\b(y)eah?\b', r"\1e'a", text)
text = re.sub(r'\d*\.\d+|\b\d{4}s?\b|(?<!:)\b(?:[1-9]|1[0-2]):[0-5]\d\b(?!:)', split_num, text)
text = re.sub(r'(?<=\d),(?=\d)', '', text)
text = re.sub(r'(?i)[$£]\d+(?:\.\d+)?(?: hundred| thousand| (?:[bm]|tr)illion)*\b|[$£]\d+\.\d\d?\b', flip_money, text)
text = re.sub(r'\d*\.\d+', point_num, text)
text = re.sub(r'(?<=\d)-(?=\d)', ' to ', text) # TODO: could be minus
text = re.sub(r'(?<=\d)S', ' S', text)
text = re.sub(r"(?<=[BCDFGHJ-NP-TV-Z])'?s\b", "'S", text)
text = re.sub(r"(?<=X')S\b", 's', text)
text = re.sub(r'(?:[A-Za-z]\.){2,} [a-z]', lambda m: m.group().replace('.', '-'), text)
text = re.sub(r'(?i)(?<=[A-Z])\.(?=[A-Z])', '-', text)
return text.strip()
phonemizers = dict(
a=phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True),
b=phonemizer.backend.EspeakBackend(language='en-gb', preserve_punctuation=True, with_stress=True),
j=Katsu(),
)
# Starred voices are more stable
CHOICES = {
'🇺🇸 🚺 American Female ⭐': 'af',
'🇺🇸 🚺 Bella ⭐': 'af_bella',
'🇺🇸 🚺 Nicole ⭐': 'af_nicole',
'🇺🇸 🚺 Sarah ⭐': 'af_sarah',
'🇺🇸 🚺 American Female 1': 'af_1',
'🇺🇸 🚺 Alloy': 'af_alloy',
'🇺🇸 🚺 Jessica': 'af_jessica',
'🇺🇸 🚺 Nova': 'af_nova',
'🇺🇸 🚺 River': 'af_river',
'🇺🇸 🚺 Sky': 'af_sky',
'🇺🇸 🚹 Michael ⭐': 'am_michael',
'🇺🇸 🚹 Adam': 'am_adam',
'🇺🇸 🚹 Echo': 'am_echo',
'🇺🇸 🚹 Eric': 'am_eric',
'🇺🇸 🚹 Liam': 'am_liam',
'🇺🇸 🚹 Onyx': 'am_onyx',
'🇬🇧 🚺 British Female 0': 'bf_0',
'🇬🇧 🚺 British Female 1': 'bf_1',
'🇬🇧 🚺 British Female 2': 'bf_2',
'🇬🇧 🚺 British Female 3': 'bf_3',
'🇬🇧 🚺 Alice': 'bf_alice',
'🇬🇧 🚺 Lily': 'bf_lily',
'🇬🇧 🚹 British Male 0': 'bm_0',
'🇬🇧 🚹 British Male 1': 'bm_1',
'🇬🇧 🚹 Daniel': 'bm_daniel',
'🇬🇧 🚹 Fable': 'bm_fable',
'🇬🇧 🚹 George': 'bm_george',
'🇬🇧 🚹 Lewis': 'bm_lewis',
'🇯🇵 🚺 Japanese Female ⭐': 'jf_0',
'🇯🇵 🚺 Japanese Female 1': 'jf_1',
'🇯🇵 🚺 Japanese Female 2': 'jf_2',
'🇯🇵 🚺 Japanese Female 3': 'jf_3',
}
VOICES = {device: {k: torch.load(os.path.join(snapshot, 'voicepacks', f'{k}.pt'), weights_only=True).to(device) for k in CHOICES.values()} for device in models}
def resolve_voices(voice, warn=True):
if not isinstance(voice, str) or voice == list(CHOICES.keys())[0]:
return ['af']
voices = voice.lower().replace(' ', '+').replace(',', '+').split('+')
if warn:
unks = {v for v in voices if v and v not in VOICES['cpu']}
if unks:
gr.Warning(f"Unknown voice{'s' if len(unks) > 1 else ''}: {','.join(unks)}")
voices = [v for v in voices if v in VOICES['cpu']]
return voices if voices else ['af']
def get_vocab():
_pad = "$"
_punctuation = ';:,.!?¡¿—…"«»“” '
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
dicts = {}
for i in range(len((symbols))):
dicts[symbols[i]] = i
return dicts
VOCAB = get_vocab()
def tokenize(ps):
return [i for i in map(VOCAB.get, ps) if i is not None]
def phonemize(text, voice, norm=True):
lang = resolve_voices(voice)[0][0]
if norm:
text = normalize_text(text, lang)
ps = phonemizers[lang].phonemize([text])
ps = ps[0] if ps else ''
# TODO: Custom phonemization rules?
ps = parens_to_angles(ps)
# https://en.wiktionary.org/wiki/kokoro#English
if lang in 'ab':
ps = ps.replace('kəkˈoːɹoʊ', 'kˈoʊkəɹoʊ').replace('kəkˈɔːɹəʊ', 'kˈəʊkəɹəʊ')
ps = ps.replace('ʲ', 'j').replace('r', 'ɹ').replace('x', 'k').replace('ɬ', 'l')
ps = re.sub(r'(?<=[a-zɹː])(?=hˈʌndɹɪd)', ' ', ps)
ps = re.sub(r' z(?=[;:,.!?¡¿—…"«»“” ]|$)', 'z', ps)
if lang == 'a':
ps = re.sub(r'(?<=nˈaɪn)ti(?!ː)', 'di', ps)
ps = ''.join(filter(lambda p: p in VOCAB, ps))
if lang == 'j' and any(p in 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' for p in ps):
gr.Warning('Japanese tokenizer does not handle English letters')
return ps.strip()
harvard_sentences = set()
with open('harvard_sentences.txt', 'r') as r:
for line in r:
harvard_sentences.add(phonemize(line, 'af'))
harvard_sentences.add(phonemize(line, 'bf_0'))
def length_to_mask(lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
SAMPLE_RATE = 24000
@torch.no_grad()
def forward(tokens, voices, speed, sk, device='cpu'):
assert sk in {os.environ['SK'], os.environ['ARENA'], os.environ['TEMP']}, sk
ref_s = torch.mean(torch.stack([VOICES[device][v][len(tokens)] for v in voices]), dim=0)
tokens = torch.LongTensor([[0, *tokens, 0]]).to(device)
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
text_mask = length_to_mask(input_lengths).to(device)
bert_dur = models[device].bert(tokens, attention_mask=(~text_mask).int())
d_en = models[device].bert_encoder(bert_dur).transpose(-1, -2)
s = ref_s[:, 128:]
d = models[device].predictor.text_encoder(d_en, s, input_lengths, text_mask)
x, _ = models[device].predictor.lstm(d)
duration = models[device].predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1) / speed
pred_dur = torch.round(duration).clamp(min=1).long()
pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item())
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame:c_frame + pred_dur[0,i].item()] = 1
c_frame += pred_dur[0,i].item()
en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
F0_pred, N_pred = models[device].predictor.F0Ntrain(en, s)
t_en = models[device].text_encoder(tokens, input_lengths, text_mask)
asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
return models[device].decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy()
@spaces.GPU(duration=10)
def forward_gpu(tokens, voices, speed, sk):
return forward(tokens, voices, speed, sk, device='cuda')
def clamp_speed(speed):
if not isinstance(speed, float) and not isinstance(speed, int):
return 1
elif speed < 0.5:
return 0.5
elif speed > 2:
return 2
return speed
def clamp_trim(trim):
if not isinstance(trim, float) and not isinstance(trim, int):
return 0.5
elif trim < 0:
return 0
elif trim > 1:
return 0.5
return trim
def trim_if_needed(out, trim):
if not trim:
return out
a, b = librosa.effects.trim(out, top_db=30)[1]
a = int(a*trim)
b = int(len(out)-(len(out)-b)*trim)
return out[a:b]
# Must be backwards compatible with https://huggingface.co/spaces/Pendrokar/TTS-Spaces-Arena
def generate(text, voice='af', ps=None, speed=1, trim=0.5, use_gpu='auto', sk=None):
if not text.strip():
return (None, '')
ps = ps or phonemize(text, voice)
if sk not in {os.environ['SK'], os.environ['ARENA'], os.environ['TEMP']}:
assert text in sents or ps.strip('"') in harvard_sentences, ('❌', datetime.now(), text, voice, use_gpu, sk)
sk = os.environ['ARENA']
voices = resolve_voices(voice, warn=ps)
speed = clamp_speed(speed)
trim = clamp_trim(trim)
use_gpu = use_gpu if use_gpu in ('auto', False, True) else 'auto'
tokens = tokenize(ps)
if not tokens:
return (None, '')
elif len(tokens) > 510:
tokens = tokens[:510]
ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
use_gpu = len(ps) > 99 if use_gpu == 'auto' else use_gpu
debug = '🔥' if sk == os.environ['SK'] else '🏆'
try:
if use_gpu:
out = forward_gpu(tokens, voices, speed, sk)
else:
out = forward(tokens, voices, speed, sk)
except gr.exceptions.Error as e:
if use_gpu:
gr.Warning(str(e))
gr.Info('Switching to CPU')
out = forward(tokens, voices, speed, sk)
else:
raise gr.Error(e)
print(debug, datetime.now(), voices, repr(text), len(ps), use_gpu, repr(e))
return (None, '')
out = trim_if_needed(out, trim)
print(debug, datetime.now(), voices, repr(text), len(ps), use_gpu, len(out))
return ((SAMPLE_RATE, out), ps)
def toggle_autoplay(autoplay):
return gr.Audio(interactive=False, label='Output Audio', autoplay=autoplay)
ML_LANGUAGES = {
'🇺🇸 en-US': 'a',
'🇬🇧 en-GB': 'b',
'🇫🇷 fr-FR': 'f',
'🇯🇵 ja-JP': 'j',
'🇰🇷 ko-KR': 'k',
'🇨🇳 zh-CN': 'z',
}
from gradio_client import Client
client = Client('hexgrad/kokoro-src', hf_token=os.environ['SRC'])
import json
ML_CHOICES = json.loads(client.predict(api_name='/list_voices'))
DEFAULT_VOICE = list(ML_CHOICES['a'].values())[0]
def change_language(value):
choices = list(ML_CHOICES[value].items())
return gr.Dropdown(choices, value=choices[0][1], label='Voice', info='⭐ voices are stable, 🧪 are unstable')
def multilingual(text, voice, speed, trim, sk):
if not text.strip():
return None
assert sk == os.environ['SK'], ('❌', datetime.now(), text, voice, sk)
try:
audio, out_ps = client.predict(text=text, voice=voice, speed=speed, trim=trim, use_gpu=True, sk=sk, api_name='/generate')
if len(out_ps) == 510:
gr.Warning('Input may have been truncated')
except Exception as e:
print('📡', datetime.now(), text, voice, repr(e))
gr.Warning('v0.23 temporarily unavailable')
gr.Info('Switching to v0.19')
audio = generate(text, voice=voice, speed=speed, trim=trim, sk=sk)[0]
return audio
with gr.Blocks() as ml_tts:
with gr.Row():
lang = gr.Radio(choices=ML_LANGUAGES.items(), value='a', label='Language', show_label=False)
with gr.Row():
with gr.Column():
text = gr.Textbox(label='Input Text', info='Generate speech for one segment of text, up to ~500 characters')
voice = gr.Dropdown(list(ML_CHOICES['a'].items()), value=DEFAULT_VOICE, label='Voice', info='⭐ voices are stable, 🧪 are unstable')
lang.change(fn=change_language, inputs=[lang], outputs=[voice])
with gr.Row():
random_btn = gr.Button('Random Text', variant='secondary')
generate_btn = gr.Button('Generate', variant='primary')
random_btn.click(get_random_text, inputs=[lang], outputs=[text])
with gr.Column():
audio = gr.Audio(interactive=False, label='Output Audio', autoplay=True)
with gr.Accordion('Audio Settings', open=False):
autoplay = gr.Checkbox(value=True, label='Autoplay')
autoplay.change(toggle_autoplay, inputs=[autoplay], outputs=[audio])
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='⚡️ Speed', info='Adjust the speaking speed')
trim = gr.Slider(minimum=0, maximum=1, value=0.5, step=0.1, label='✂️ Trim', info='How much to cut from both ends')
with gr.Row():
gr.Markdown('''
❗ **This space is experiencing heavy lag, possibly due to high traffic.**
🎄 Kokoro v0.19, Bella, & Sarah have been open sourced at [hf.co/hexgrad/Kokoro-82M](https://huggingface.co/hexgrad/Kokoro-82M)
🎉 New! Kokoro v0.23 now supports 5 languages. 🎉
🧪 Note that v0.23 is experimental/WIP and may produce shaky speech. v0.19 is the last stable version.
⚠️ v0.23 does not yet support custom pronunciation, Long Form, or Voice Mixer. You can still use these features in v0.19.
📡 Telemetry: For debugging purposes, the text you enter anywhere in this space may be printed to temporary logs, which are periodically wiped.
🇨🇳🇯🇵🇰🇷 Tokenizers for Chinese, Japanese, and Korean do not correctly handle English letters yet. Remove or convert them to CJK first.
''', container=True)
with gr.Row():
sk = gr.Textbox(visible=False)
text.change(lambda: os.environ['SK'], outputs=[sk])
text.submit(multilingual, inputs=[text, voice, speed, trim, sk], outputs=[audio])
generate_btn.click(multilingual, inputs=[text, voice, speed, trim, sk], outputs=[audio])
USE_GPU_CHOICES = [('Auto 🔀', 'auto'), ('CPU 💬', False), ('ZeroGPU 📄', True)]
USE_GPU_INFOS = {
'auto': 'Use CPU or GPU, whichever is faster',
False: 'CPU is ~faster <100 tokens',
True: 'ZeroGPU is ~faster >100 tokens',
}
def change_use_gpu(value):
return gr.Dropdown(USE_GPU_CHOICES, value=value, label='Hardware', info=USE_GPU_INFOS[value], interactive=CUDA_AVAILABLE)
with gr.Blocks() as basic_tts:
with gr.Row():
with gr.Column():
text = gr.Textbox(label='Input Text', info='Generate speech for one segment of text using Kokoro, a TTS model with 82 million parameters')
with gr.Row():
voice = gr.Dropdown(list(CHOICES.items()), value='af', allow_custom_value=True, label='Voice', info='Starred voices are more stable')
use_gpu = gr.Dropdown(
USE_GPU_CHOICES,
value='auto' if CUDA_AVAILABLE else False,
label='Hardware',
info=USE_GPU_INFOS['auto' if CUDA_AVAILABLE else False],
interactive=CUDA_AVAILABLE
)
use_gpu.change(fn=change_use_gpu, inputs=[use_gpu], outputs=[use_gpu])
with gr.Row():
random_btn = gr.Button('Random Text', variant='secondary')
generate_btn = gr.Button('Generate', variant='primary')
random_btn.click(get_random_text, inputs=[voice], outputs=[text])
with gr.Accordion('Input Tokens', open=False):
in_ps = gr.Textbox(show_label=False, info='Override the input text with custom phonemes. Leave this blank to automatically tokenize the input text instead.')
with gr.Row():
clear_btn = gr.ClearButton(in_ps)
phonemize_btn = gr.Button('Tokenize Input Text', variant='primary')
phonemize_btn.click(phonemize, inputs=[text, voice], outputs=[in_ps])
with gr.Column():
audio = gr.Audio(interactive=False, label='Output Audio', autoplay=True)
with gr.Accordion('Audio Settings', open=False):
autoplay = gr.Checkbox(value=True, label='Autoplay')
autoplay.change(toggle_autoplay, inputs=[autoplay], outputs=[audio])
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='⚡️ Speed', info='Adjust the speaking speed')
trim = gr.Slider(minimum=0, maximum=1, value=0.5, step=0.1, label='✂️ Trim', info='How much to cut from both ends of each segment')
with gr.Accordion('Output Tokens', open=True):
out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio, up to 510 allowed. Same as input tokens if supplied, excluding unknowns.')
with gr.Accordion('Voice Mixer', open=False):
gr.Markdown('Create a custom voice by mixing and matching other voices. Click an orange button to add one part to your mix, or click a gray button to start over. You can also enter a voice mix as text.')
for i in range(8):
with gr.Row():
for j in range(4):
with gr.Column():
btn = gr.Button(list(CHOICES.values())[i*4+j], variant='primary' if i*4+j < 10 else 'secondary')
btn.click(lambda v, b: f'{v}+{b}' if v.startswith(b[:2]) else b, inputs=[voice, btn], outputs=[voice])
voice.change(lambda v, b: gr.Button(b, variant='primary' if v.startswith(b[:2]) else 'secondary'), inputs=[voice, btn], outputs=[btn])
with gr.Row():
sk = gr.Textbox(visible=False)
text.change(lambda: os.environ['SK'], outputs=[sk])
text.submit(generate, inputs=[text, voice, in_ps, speed, trim, use_gpu, sk], outputs=[audio, out_ps])
generate_btn.click(generate, inputs=[text, voice, in_ps, speed, trim, use_gpu, sk], outputs=[audio, out_ps])
@torch.no_grad()
def lf_forward(token_lists, voices, speed, sk, device='cpu'):
assert sk == os.environ['SK'], sk
voicepack = torch.mean(torch.stack([VOICES[device][v] for v in voices]), dim=0)
outs = []
for tokens in token_lists:
ref_s = voicepack[len(tokens)]
s = ref_s[:, 128:]
tokens = torch.LongTensor([[0, *tokens, 0]]).to(device)
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
text_mask = length_to_mask(input_lengths).to(device)
bert_dur = models[device].bert(tokens, attention_mask=(~text_mask).int())
d_en = models[device].bert_encoder(bert_dur).transpose(-1, -2)
d = models[device].predictor.text_encoder(d_en, s, input_lengths, text_mask)
x, _ = models[device].predictor.lstm(d)
duration = models[device].predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1) / speed
pred_dur = torch.round(duration).clamp(min=1).long()
pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item())
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame:c_frame + pred_dur[0,i].item()] = 1
c_frame += pred_dur[0,i].item()
en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
F0_pred, N_pred = models[device].predictor.F0Ntrain(en, s)
t_en = models[device].text_encoder(tokens, input_lengths, text_mask)
asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
outs.append(models[device].decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy())
return outs
@spaces.GPU
def lf_forward_gpu(token_lists, voices, speed, sk):
return lf_forward(token_lists, voices, speed, sk, device='cuda')
def resplit_strings(arr):
# Handle edge cases
if not arr:
return '', ''
if len(arr) == 1:
return arr[0], ''
# Try each possible split point
min_diff = float('inf')
best_split = 0
# Calculate lengths when joined with spaces
lengths = [len(s) for s in arr]
spaces = len(arr) - 1 # Total spaces needed
# Try each split point
left_len = 0
right_len = sum(lengths) + spaces
for i in range(1, len(arr)):
# Add current word and space to left side
left_len += lengths[i-1] + (1 if i > 1 else 0)
# Remove current word and space from right side
right_len -= lengths[i-1] + 1
diff = abs(left_len - right_len)
if diff < min_diff:
min_diff = diff
best_split = i
# Join the strings with the best split point
return ' '.join(arr[:best_split]), ' '.join(arr[best_split:])
def recursive_split(text, voice):
if not text:
return []
tokens = phonemize(text, voice, norm=False)
if len(tokens) < 511:
return [(text, tokens, len(tokens))] if tokens else []
if ' ' not in text:
return []
for punctuation in ['!.?…', ':;', ',—']:
splits = re.split(f'(?:(?<=[{punctuation}])|(?<=[{punctuation}]["\'»])|(?<=[{punctuation}]["\'»]["\'»])) ', text)
if len(splits) > 1:
break
else:
splits = None
splits = splits or text.split(' ')
a, b = resplit_strings(splits)
return recursive_split(a, voice) + recursive_split(b, voice)
def segment_and_tokenize(text, voice, skip_square_brackets=True, newline_split=2):
lang = resolve_voices(voice)[0][0]
if skip_square_brackets:
text = re.sub(r'\[.*?\]', '', text)
texts = [t.strip() for t in re.split('\n{'+str(newline_split)+',}', normalize_text(text, lang))] if newline_split > 0 else [normalize_text(text, lang)]
segments = [row for t in texts for row in recursive_split(t, voice)]
return [(i, *row) for i, row in enumerate(segments)]
def lf_generate(segments, voice, speed=1, trim=0, pad_between=0, use_gpu=True, sk=None):
if sk != os.environ['SK']:
return
token_lists = list(map(tokenize, segments['Tokens']))
voices = resolve_voices(voice)
speed = clamp_speed(speed)
trim = clamp_trim(trim)
pad_between = int(pad_between)
use_gpu = True
batch_sizes = [89, 55, 34, 21, 13, 8, 5, 3, 2, 1, 1]
i = 0
while i < len(token_lists):
bs = batch_sizes.pop() if batch_sizes else 100
tokens = token_lists[i:i+bs]
print('📖', datetime.now(), len(tokens), voices, use_gpu, ''.join(segments['Text'][i:i+bs]).replace('\n', ' '))
try:
if use_gpu:
outs = lf_forward_gpu(tokens, voices, speed, sk)
else:
outs = lf_forward(tokens, voices, speed, sk)
except gr.exceptions.Error as e:
if use_gpu:
gr.Warning(str(e))
gr.Info('Switching to CPU')
outs = lf_forward(tokens, voices, speed, sk)
use_gpu = False
elif outs:
gr.Warning(repr(e))
i = len(token_lists)
else:
raise gr.Error(e)
for out in outs:
if i > 0 and pad_between > 0:
yield (SAMPLE_RATE, np.zeros(pad_between))
out = trim_if_needed(out, trim)
yield (SAMPLE_RATE, out)
i += bs
def did_change_segments(segments):
x = len(segments) if segments['Length'].any() else 0
return [
gr.Button('Tokenize', variant='secondary' if x else 'primary'),
gr.Button(f'Generate x{x}', variant='primary' if x else 'secondary', interactive=x > 0),
]
def extract_text(file):
if file.endswith('.pdf'):
with open(file, 'rb') as rb:
pdf_reader = pypdf.PdfReader(rb)
return '\n'.join([page.extract_text() for page in pdf_reader.pages])
elif file.endswith('.txt'):
with open(file, 'r') as r:
return '\n'.join([line for line in r])
return None
with gr.Blocks() as lf_tts:
with gr.Row():
with gr.Column():
file_input = gr.File(file_types=['.pdf', '.txt'], label='pdf or txt')
text = gr.Textbox(label='Input Text', info='Generate speech in batches of 100 text segments and automatically join them together')
file_input.upload(fn=extract_text, inputs=[file_input], outputs=[text])
with gr.Row():
voice = gr.Dropdown(list(CHOICES.items()), value='af', allow_custom_value=True, label='Voice', info='Starred voices are more stable')
use_gpu = gr.Dropdown(
[('ZeroGPU 🚀', True), ('CPU 🐌', False)],
value=CUDA_AVAILABLE,
label='Hardware',
info='GPU is >10x faster but has a usage quota',
interactive=CUDA_AVAILABLE
)
with gr.Accordion('Text Settings', open=False):
skip_square_brackets = gr.Checkbox(True, label='Skip [Square Brackets]', info='Recommended for academic papers, Wikipedia articles, or texts with citations')
newline_split = gr.Number(2, label='Newline Split', info='Split the input text on this many newlines. Affects how the text is segmented.', precision=0, minimum=0)
with gr.Column():
audio_stream = gr.Audio(label='Output Audio Stream', interactive=False, streaming=True, autoplay=True)
with gr.Accordion('Audio Settings', open=True):
speed = gr.Slider(minimum=0.5, maximum=2, value=1, step=0.1, label='⚡️ Speed', info='Adjust the speaking speed')
trim = gr.Slider(minimum=0, maximum=1, value=0, step=0.1, label='✂️ Trim', info='How much to cut from both ends')
pad_between = gr.Slider(minimum=0, maximum=24000, value=0, step=1000, label='🔇 Pad Between', info='How many silent samples to insert between segments')
with gr.Row():
segment_btn = gr.Button('Tokenize', variant='primary')
generate_btn = gr.Button('Generate x0', variant='secondary', interactive=False)
stop_btn = gr.Button('Stop', variant='stop')
with gr.Row():
segments = gr.Dataframe(headers=['#', 'Text', 'Tokens', 'Length'], row_count=(1, 'dynamic'), col_count=(4, 'fixed'), label='Segments', interactive=False, wrap=True)
segments.change(fn=did_change_segments, inputs=[segments], outputs=[segment_btn, generate_btn])
with gr.Row():
sk = gr.Textbox(visible=False)
segments.change(lambda: os.environ['SK'], outputs=[sk])
segment_btn.click(segment_and_tokenize, inputs=[text, voice, skip_square_brackets, newline_split], outputs=[segments])
generate_event = generate_btn.click(lf_generate, inputs=[segments, voice, speed, trim, pad_between, use_gpu, sk], outputs=[audio_stream])
stop_btn.click(fn=None, cancels=generate_event)
with gr.Blocks() as about:
gr.Markdown('''
Kokoro is a frontier TTS model for its size. It has [82 million](https://hf.co/spaces/hexgrad/Kokoro-TTS/blob/main/app.py#L34) parameters, uses a lean [StyleTTS 2](https://github.com/yl4579/StyleTTS2) architecture, and was trained on high-quality data. The weights are currently private, but a free public demo is hosted here, at `https://hf.co/spaces/hexgrad/Kokoro-TTS`. The Community tab is open for feature requests, bug reports, etc. For other inquiries, contact `@rzvzn` on Discord.
### FAQ
**Will this be open sourced?**<br/>
v0.19 has been open sourced at [hf.co/hexgrad/Kokoro-82M](https://huggingface.co/hexgrad/Kokoro-82M) along with the voicepacks Bella, Sarah, and `af`. There currently isn't a release date scheduled for the other voices.
**What is the difference between stable and unstable voices?**<br/>
Unstable voices are more likely to stumble or produce unnatural artifacts, especially on short or strange texts. Stable voices are more likely to deliver natural speech on a wider range of inputs. The first two audio clips in this [blog post](https://hf.co/blog/hexgrad/kokoro-short-burst-upgrade) are examples of unstable and stable speech. Note that even unstable voices can sound fine on medium to long texts.
**How can CPU be faster than ZeroGPU?**<br/>
The CPU is a dedicated resource for this Space, while the ZeroGPU pool is shared and dynamically allocated across all of HF. The ZeroGPU queue/allocator system inevitably adds latency to each request.<br/>
For Basic TTS under ~100 tokens or characters, only a few seconds of audio need to be generated, so the actual compute is not that heavy. In these short bursts, the dedicated CPU can often compute the result faster than the total time it takes to: enter the ZeroGPU queue, wait to get allocated, and have a GPU compute and deliver the result.<br/>
ZeroGPU catches up beyond 100 tokens and especially closer to the ~500 token context window. Long Form mode processes batches of 100 segments at a time, so the GPU should outspeed the CPU by 1-2 orders of magnitude.
### Compute
Kokoro v0.19 was trained on A100 80GB vRAM instances for approximately 500 total GPU hours. The average cost for each GPU hour was around $0.80, so the total cost was around $400.
### Gradio API
The API has been restricted due to high request volume impacting CPU latency.
### Licenses
Inference code: MIT<br/>
[eSpeak NG](https://github.com/espeak-ng/espeak-ng): GPL-3.0<br/>
Random English texts: Unknown from [Quotable Data](https://github.com/quotable-io/data/blob/master/data/quotes.json)<br/>
Other random texts: CC0 public domain from [Common Voice](https://github.com/common-voice/common-voice)
''')
'''
This Space can be used via API. The following code block can be copied and run in one Google Colab cell.
```
# 1️⃣ Install the Gradio Python client
!pip install -q gradio_client
# 2️⃣ Initialize the client
from gradio_client import Client
client = Client('hexgrad/Kokoro-TTS')
# 3️⃣ Call the generate endpoint, which returns a pair: an audio path and a string of output phonemes
audio_path, out_ps = client.predict(
text="How could I know? It's an unanswerable question. Like asking an unborn child if they'll lead a good life. They haven't even been born.",
voice='af',
api_name='/generate'
)
# 4️⃣ Display the audio and print the output phonemes
from IPython.display import display, Audio
display(Audio(audio_path, autoplay=True))
print(out_ps)
```
This Space and the underlying Kokoro model are both under development and subject to change. Reliability is not guaranteed. Hugging Face and Gradio might enforce their own rate limits.
'''
with gr.Blocks() as changelog:
gr.Markdown('''
**25 Dec 2024**<br/>
🎄 Kokoro v0.19, Bella, & Sarah have been open sourced at [hf.co/hexgrad/Kokoro-82M](https://huggingface.co/hexgrad/Kokoro-82M)
**11 Dec 2024**<br/>
🚀 Multilingual v0.23<br/>
🗣️ 85 total voices
**8 Dec 2024**<br/>
🚀 Multilingual v0.22<br/>
🌐 5 languages: English, Chinese, Japanese, Korean, French<br/>
🗣️ 68 total voices<br/>
📁 Added data card and telemetry notice
**30 Nov 2024**<br/>
✂️ Better trimming with `librosa.effects.trim`<br/>
🏆 https://hf.co/spaces/Pendrokar/TTS-Spaces-Arena
**28 Nov 2024**<br/>
🥈 CPU fallback<br/>
🌊 Long Form streaming and stop button<br/>
✋ Restricted API due to high request volume impacting CPU latency
**25 Nov 2024**<br/>
🎨 Voice Mixer added
**24 Nov 2024**<br/>
🛑 Model training halted, v0.19 is the current stable version
**23 Nov 2024**<br/>
🔀 Hardware switching between CPU and GPU<br/>
🗣️ Restored old voices, back up to 32 total
**22 Nov 2024**<br/>
🚀 Model v0.19<br/>
🧪 Validation losses: 0.261 mel, 0.627 dur, 1.897 f0<br/>
📄 https://hf.co/blog/hexgrad/kokoro-short-burst-upgrade
**15 Nov 2024**<br/>
🚀 Model v0.16<br/>
🧪 Validation losses: 0.263 mel, 0.646 dur, 1.934 f0
**12 Nov 2024**<br/>
🚀 Model v0.14<br/>
🧪 Validation losses: 0.262 mel, 0.642 dur, 1.889 f0
''')
with gr.Blocks() as data_card:
gr.Markdown('''
This data card was last updated on **8 Dec 2024**.
Kokoro was trained exclusively on **permissive/non-copyrighted audio data** and IPA phoneme labels. Examples of permissive/non-copyrighted audio include:
* Public domain audio
* Audio licensed under Apache, MIT, etc
* Synthetic audio<sup>[1]</sup> generated by closed<sup>[2]</sup> TTS models from large providers
* CC BY audio (see below for attribution table)
[1] [https://copyright.gov/ai/ai_policy_guidance.pdf](https://copyright.gov/ai/ai_policy_guidance.pdf)<br/>
[2] No synthetic audio from open TTS models or "custom voice clones"
### Creative Commons Attribution
The following CC BY audio was part of the dataset used to train Kokoro.
| Audio Data | Duration Used | License | Added to Training Set After |
| ---------- | ------------- | ------- | --------------------------- |
| [Koniwa](https://github.com/koniwa/koniwa) `tnc` | <1h | [CC BY 3.0](https://creativecommons.org/licenses/by/3.0/deed.ja) | v0.19 / 22 Nov 2024 |
| [SIWIS](https://datashare.ed.ac.uk/handle/10283/2353) | <11h | [CC BY 4.0](https://datashare.ed.ac.uk/bitstream/handle/10283/2353/license_text) | v0.19 / 22 Nov 2024 |
### Notable Datasets Not Used
These datasets were **NOT** used to train Kokoro. They may be of interest to academics:
* Emilia, `cc-by-nc-4.0`: `https://huggingface.co/datasets/amphion/Emilia-Dataset`
* Expresso, `cc-by-nc-4.0`: `https://huggingface.co/datasets/ylacombe/expresso`
* JVS, NC clause: `https://sites.google.com/site/shinnosuketakamichi/research-topics/jvs_corpus`
''')
with gr.Blocks() as app:
gr.TabbedInterface(
[ml_tts, basic_tts, lf_tts, about, data_card, changelog],
['🔥 Latest v0.23', '🗣️ TTS v0.19', '📖 Long Form v0.19', 'ℹ️ About', '📁 Data', '📝 Changelog'],
)
if __name__ == '__main__':
app.queue(api_open=True).launch(show_api=False, ssr_mode=True)
|