Kokoro-TTS / app.py
hexgrad's picture
Upload 10 files
e9b69d2 verified
raw
history blame
9.05 kB
from huggingface_hub import snapshot_download
from katsu import Katsu
from models import build_model
import gradio as gr
import noisereduce as nr
import numpy as np
import os
import phonemizer
import random
import torch
import yaml
random_texts = {}
for lang in ['en', 'ja']:
with open(f'{lang}.txt', 'r') as r:
random_texts[lang] = [line.strip() for line in r]
def get_random_text(voice):
if voice[0] == 'j':
lang = 'ja'
else:
lang = 'en'
return random.choice(random_texts[lang])
def parens_to_angles(s):
return s.replace('(', '«').replace(')', '»')
def normalize(text):
# TODO: Custom text normalization rules?
text = text.replace('Dr.', 'Doctor')
text = text.replace('Mr.', 'Mister')
text = text.replace('Ms.', 'Miss')
text = text.replace('Mrs.', 'Mrs')
return parens_to_angles(text)
phonemizers = dict(
a=phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True),
b=phonemizer.backend.EspeakBackend(language='en-gb', preserve_punctuation=True, with_stress=True),
j=Katsu()
)
def phonemize(text, voice):
lang = voice[0]
text = normalize(text)
ps = phonemizers[lang].phonemize([text])
ps = ps[0] if ps else ''
# TODO: Custom phonemization rules?
ps = parens_to_angles(ps)
# https://en.wiktionary.org/wiki/kokoro#English
ps = ps.replace('kəkˈoːɹoʊ', 'kˈoʊkəɹoʊ').replace('kəkˈɔːɹəʊ', 'kˈəʊkəɹəʊ')
ps = ''.join(filter(lambda p: p in VOCAB, ps))
return ps.strip()
def length_to_mask(lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
def get_vocab():
_pad = "$"
_punctuation = ';:,.!?¡¿—…"«»“” '
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
dicts = {}
for i in range(len((symbols))):
dicts[symbols[i]] = i
return dicts
VOCAB = get_vocab()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
snapshot = snapshot_download(repo_id='hexgrad/kokoro', allow_patterns=['*.pt', '*.pth', '*.yml'], use_auth_token=os.environ['TOKEN'])
config = yaml.safe_load(open(os.path.join(snapshot, 'config.yml')))
model = build_model(config['model_params'])
_ = [model[key].eval() for key in model]
_ = [model[key].to(device) for key in model]
for key, state_dict in torch.load(os.path.join(snapshot, 'net.pth'), map_location='cpu', weights_only=True)['net'].items():
assert key in model, key
try:
model[key].load_state_dict(state_dict)
except:
state_dict = {k[7:]: v for k, v in state_dict.items()}
model[key].load_state_dict(state_dict, strict=False)
CHOICES = {
'🇺🇸 🚺 American Female 0': 'af0',
'🇺🇸 🚺 Bella': 'af1',
'🇺🇸 🚺 Nicole': 'af2',
'🇺🇸 🚹 Michael': 'am0',
'🇺🇸 🚹 Adam': 'am1',
'🇬🇧 🚺 British Female 0': 'bf0',
'🇬🇧 🚺 British Female 1': 'bf1',
'🇬🇧 🚺 British Female 2': 'bf2',
'🇬🇧 🚹 British Male 0': 'bm0',
'🇬🇧 🚹 British Male 1': 'bm1',
'🇬🇧 🚹 British Male 2': 'bm2',
'🇬🇧 🚹 British Male 3': 'bm3',
'🇯🇵 🚺 Japanese Female 0': 'jf0',
}
VOICES = {k: torch.load(os.path.join(snapshot, 'voices', f'{k}.pt'), weights_only=True).to(device) for k in CHOICES.values()}
np_log_99 = np.log(99)
def s_curve(p):
if p <= 0:
return 0
elif p >= 1:
return 1
s = 1 / (1 + np.exp((1-p*2)*np_log_99))
s = (s-0.01) * 50/49
return s
SAMPLE_RATE = 24000
@torch.no_grad()
def forward(text, voice, ps=None, speed=1.0, reduce_noise=0.5, opening_cut=5000, closing_cut=0, ease_in=3000, ease_out=0):
ps = ps or phonemize(text, voice)
tokens = [i for i in map(VOCAB.get, ps) if i is not None]
if not tokens:
return (None, '')
elif len(tokens) > 510:
tokens = tokens[:510]
ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
tokens = torch.LongTensor([[0, *tokens, 0]]).to(device)
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
text_mask = length_to_mask(input_lengths).to(device)
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
ref_s = VOICES[voice]
s = ref_s[:, 128:]
d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)
x, _ = model.predictor.lstm(d)
duration = model.predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1) / speed
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
c_frame += int(pred_dur[i].data)
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
t_en = model.text_encoder(tokens, input_lengths, text_mask)
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device))
out = model.decoder(asr, F0_pred, N_pred, ref_s[:, :128])
out = out.squeeze().cpu().numpy()
if reduce_noise > 0:
out = nr.reduce_noise(y=out, sr=SAMPLE_RATE, prop_decrease=reduce_noise, n_fft=512)
opening_cut = max(0, int(opening_cut / speed))
if opening_cut > 0:
out[:opening_cut] = 0
closing_cut = max(0, int(closing_cut / speed))
if closing_cut > 0:
out = out[-closing_cut:] = 0
ease_in = min(int(ease_in / speed), len(out)//2 - opening_cut)
for i in range(ease_in):
out[i+opening_cut] *= s_curve(i / ease_in)
ease_out = min(int(ease_out / speed), len(out)//2 - closing_cut)
for i in range(ease_out):
out[-i-1-closing_cut] *= s_curve(i / ease_out)
return ((SAMPLE_RATE, out), ps)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
text = gr.Textbox(label='Input Text')
voice = gr.Dropdown(list(CHOICES.items()), label='Voice')
with gr.Row():
random_btn = gr.Button('Random Text', variant='secondary')
generate_btn = gr.Button('Generate', variant='primary')
random_btn.click(get_random_text, inputs=[voice], outputs=[text])
with gr.Accordion('Input Phonemes', open=False):
in_ps = gr.Textbox(show_label=False, info='Override the input text with custom pronunciation. Leave this blank to use the input text instead.')
with gr.Row():
clear_btn = gr.ClearButton(in_ps)
phonemize_btn = gr.Button('Phonemize Input Text', variant='primary')
phonemize_btn.click(phonemize, inputs=[text, voice], outputs=[in_ps])
with gr.Column():
audio = gr.Audio(interactive=False, label='Output Audio')
with gr.Accordion('Tokens', open=True):
out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio. Same as input phonemes if supplied, excluding unknown characters and truncated to 510 tokens.')
with gr.Accordion('Advanced Settings', open=False):
with gr.Row():
reduce_noise = gr.Slider(minimum=0, maximum=1, value=0.5, label='Reduce Noise', info='👻 Fix it in post: non-stationary noise reduction via spectral gating.')
with gr.Row():
speed = gr.Slider(minimum=0.5, maximum=2.0, value=1.0, step=0.1, label='Speed', info='⚡️ Adjust the speed of the audio. The trim settings below are also auto-scaled by speed.')
with gr.Row():
with gr.Column():
opening_cut = gr.Slider(minimum=0, maximum=24000, value=5000, step=1000, label='Opening Cut', info='✂️ Zero out this many samples at the start.')
with gr.Column():
closing_cut = gr.Slider(minimum=0, maximum=24000, value=0, step=1000, label='Closing Cut', info='✂️ Zero out this many samples at the end.')
with gr.Row():
with gr.Column():
ease_in = gr.Slider(minimum=0, maximum=24000, value=3000, step=1000, label='Ease In', info='🚀 Ease in for this many samples, after opening cut.')
with gr.Column():
ease_out = gr.Slider(minimum=0, maximum=24000, value=0, step=1000, label='Ease Out', info='📐 Ease out for this many samples, before closing cut.')
generate_btn.click(forward, inputs=[text, voice, in_ps, speed, reduce_noise, opening_cut, closing_cut, ease_in, ease_out], outputs=[audio, out_ps])
if __name__ == '__main__':
demo.launch()