Spaces:
Running
on
Zero
Running
on
Zero
from huggingface_hub import snapshot_download | |
from katsu import Katsu | |
from models import build_model | |
import gradio as gr | |
import noisereduce as nr | |
import numpy as np | |
import os | |
import phonemizer | |
import random | |
import torch | |
import yaml | |
random_texts = {} | |
for lang in ['en', 'ja']: | |
with open(f'{lang}.txt', 'r') as r: | |
random_texts[lang] = [line.strip() for line in r] | |
def get_random_text(voice): | |
if voice[0] == 'j': | |
lang = 'ja' | |
else: | |
lang = 'en' | |
return random.choice(random_texts[lang]) | |
def parens_to_angles(s): | |
return s.replace('(', '«').replace(')', '»') | |
def normalize(text): | |
# TODO: Custom text normalization rules? | |
text = text.replace('Dr.', 'Doctor') | |
text = text.replace('Mr.', 'Mister') | |
text = text.replace('Ms.', 'Miss') | |
text = text.replace('Mrs.', 'Mrs') | |
return parens_to_angles(text) | |
phonemizers = dict( | |
a=phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True), | |
b=phonemizer.backend.EspeakBackend(language='en-gb', preserve_punctuation=True, with_stress=True), | |
j=Katsu() | |
) | |
def phonemize(text, voice): | |
lang = voice[0] | |
text = normalize(text) | |
ps = phonemizers[lang].phonemize([text]) | |
ps = ps[0] if ps else '' | |
# TODO: Custom phonemization rules? | |
ps = parens_to_angles(ps) | |
# https://en.wiktionary.org/wiki/kokoro#English | |
ps = ps.replace('kəkˈoːɹoʊ', 'kˈoʊkəɹoʊ').replace('kəkˈɔːɹəʊ', 'kˈəʊkəɹəʊ') | |
ps = ''.join(filter(lambda p: p in VOCAB, ps)) | |
return ps.strip() | |
def length_to_mask(lengths): | |
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) | |
mask = torch.gt(mask+1, lengths.unsqueeze(1)) | |
return mask | |
def get_vocab(): | |
_pad = "$" | |
_punctuation = ';:,.!?¡¿—…"«»“” ' | |
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' | |
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ" | |
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa) | |
dicts = {} | |
for i in range(len((symbols))): | |
dicts[symbols[i]] = i | |
return dicts | |
VOCAB = get_vocab() | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
snapshot = snapshot_download(repo_id='hexgrad/kokoro', allow_patterns=['*.pt', '*.pth', '*.yml'], use_auth_token=os.environ['TOKEN']) | |
config = yaml.safe_load(open(os.path.join(snapshot, 'config.yml'))) | |
model = build_model(config['model_params']) | |
_ = [model[key].eval() for key in model] | |
_ = [model[key].to(device) for key in model] | |
for key, state_dict in torch.load(os.path.join(snapshot, 'net.pth'), map_location='cpu', weights_only=True)['net'].items(): | |
assert key in model, key | |
try: | |
model[key].load_state_dict(state_dict) | |
except: | |
state_dict = {k[7:]: v for k, v in state_dict.items()} | |
model[key].load_state_dict(state_dict, strict=False) | |
CHOICES = { | |
'🇺🇸 🚺 American Female 0': 'af0', | |
'🇺🇸 🚺 Bella': 'af1', | |
'🇺🇸 🚺 Nicole': 'af2', | |
'🇺🇸 🚹 Michael': 'am0', | |
'🇺🇸 🚹 Adam': 'am1', | |
'🇬🇧 🚺 British Female 0': 'bf0', | |
'🇬🇧 🚺 British Female 1': 'bf1', | |
'🇬🇧 🚺 British Female 2': 'bf2', | |
'🇬🇧 🚹 British Male 0': 'bm0', | |
'🇬🇧 🚹 British Male 1': 'bm1', | |
'🇬🇧 🚹 British Male 2': 'bm2', | |
'🇬🇧 🚹 British Male 3': 'bm3', | |
'🇯🇵 🚺 Japanese Female 0': 'jf0', | |
} | |
VOICES = {k: torch.load(os.path.join(snapshot, 'voices', f'{k}.pt'), weights_only=True).to(device) for k in CHOICES.values()} | |
np_log_99 = np.log(99) | |
def s_curve(p): | |
if p <= 0: | |
return 0 | |
elif p >= 1: | |
return 1 | |
s = 1 / (1 + np.exp((1-p*2)*np_log_99)) | |
s = (s-0.01) * 50/49 | |
return s | |
SAMPLE_RATE = 24000 | |
def forward(text, voice, ps=None, speed=1.0, reduce_noise=0.5, opening_cut=5000, closing_cut=0, ease_in=3000, ease_out=0): | |
ps = ps or phonemize(text, voice) | |
tokens = [i for i in map(VOCAB.get, ps) if i is not None] | |
if not tokens: | |
return (None, '') | |
elif len(tokens) > 510: | |
tokens = tokens[:510] | |
ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens) | |
tokens = torch.LongTensor([[0, *tokens, 0]]).to(device) | |
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device) | |
text_mask = length_to_mask(input_lengths).to(device) | |
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int()) | |
d_en = model.bert_encoder(bert_dur).transpose(-1, -2) | |
ref_s = VOICES[voice] | |
s = ref_s[:, 128:] | |
d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask) | |
x, _ = model.predictor.lstm(d) | |
duration = model.predictor.duration_proj(x) | |
duration = torch.sigmoid(duration).sum(axis=-1) / speed | |
pred_dur = torch.round(duration.squeeze()).clamp(min=1) | |
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data)) | |
c_frame = 0 | |
for i in range(pred_aln_trg.size(0)): | |
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1 | |
c_frame += int(pred_dur[i].data) | |
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)) | |
F0_pred, N_pred = model.predictor.F0Ntrain(en, s) | |
t_en = model.text_encoder(tokens, input_lengths, text_mask) | |
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device)) | |
out = model.decoder(asr, F0_pred, N_pred, ref_s[:, :128]) | |
out = out.squeeze().cpu().numpy() | |
if reduce_noise > 0: | |
out = nr.reduce_noise(y=out, sr=SAMPLE_RATE, prop_decrease=reduce_noise, n_fft=512) | |
opening_cut = max(0, int(opening_cut / speed)) | |
if opening_cut > 0: | |
out[:opening_cut] = 0 | |
closing_cut = max(0, int(closing_cut / speed)) | |
if closing_cut > 0: | |
out = out[-closing_cut:] = 0 | |
ease_in = min(int(ease_in / speed), len(out)//2 - opening_cut) | |
for i in range(ease_in): | |
out[i+opening_cut] *= s_curve(i / ease_in) | |
ease_out = min(int(ease_out / speed), len(out)//2 - closing_cut) | |
for i in range(ease_out): | |
out[-i-1-closing_cut] *= s_curve(i / ease_out) | |
return ((SAMPLE_RATE, out), ps) | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
text = gr.Textbox(label='Input Text') | |
voice = gr.Dropdown(list(CHOICES.items()), label='Voice') | |
with gr.Row(): | |
random_btn = gr.Button('Random Text', variant='secondary') | |
generate_btn = gr.Button('Generate', variant='primary') | |
random_btn.click(get_random_text, inputs=[voice], outputs=[text]) | |
with gr.Accordion('Input Phonemes', open=False): | |
in_ps = gr.Textbox(show_label=False, info='Override the input text with custom pronunciation. Leave this blank to use the input text instead.') | |
with gr.Row(): | |
clear_btn = gr.ClearButton(in_ps) | |
phonemize_btn = gr.Button('Phonemize Input Text', variant='primary') | |
phonemize_btn.click(phonemize, inputs=[text, voice], outputs=[in_ps]) | |
with gr.Column(): | |
audio = gr.Audio(interactive=False, label='Output Audio') | |
with gr.Accordion('Tokens', open=True): | |
out_ps = gr.Textbox(interactive=False, show_label=False, info='Tokens used to generate the audio. Same as input phonemes if supplied, excluding unknown characters and truncated to 510 tokens.') | |
with gr.Accordion('Advanced Settings', open=False): | |
with gr.Row(): | |
reduce_noise = gr.Slider(minimum=0, maximum=1, value=0.5, label='Reduce Noise', info='👻 Fix it in post: non-stationary noise reduction via spectral gating.') | |
with gr.Row(): | |
speed = gr.Slider(minimum=0.5, maximum=2.0, value=1.0, step=0.1, label='Speed', info='⚡️ Adjust the speed of the audio. The trim settings below are also auto-scaled by speed.') | |
with gr.Row(): | |
with gr.Column(): | |
opening_cut = gr.Slider(minimum=0, maximum=24000, value=5000, step=1000, label='Opening Cut', info='✂️ Zero out this many samples at the start.') | |
with gr.Column(): | |
closing_cut = gr.Slider(minimum=0, maximum=24000, value=0, step=1000, label='Closing Cut', info='✂️ Zero out this many samples at the end.') | |
with gr.Row(): | |
with gr.Column(): | |
ease_in = gr.Slider(minimum=0, maximum=24000, value=3000, step=1000, label='Ease In', info='🚀 Ease in for this many samples, after opening cut.') | |
with gr.Column(): | |
ease_out = gr.Slider(minimum=0, maximum=24000, value=0, step=1000, label='Ease Out', info='📐 Ease out for this many samples, before closing cut.') | |
generate_btn.click(forward, inputs=[text, voice, in_ps, speed, reduce_noise, opening_cut, closing_cut, ease_in, ease_out], outputs=[audio, out_ps]) | |
if __name__ == '__main__': | |
demo.launch() | |