Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- .gitignore +2 -1
- front_end.py +35 -12
- rag.py +2 -3
.gitignore
CHANGED
|
@@ -1,3 +1,4 @@
|
|
| 1 |
.venv
|
| 2 |
.env
|
| 3 |
-
*pycache*
|
|
|
|
|
|
| 1 |
.venv
|
| 2 |
.env
|
| 3 |
+
*pycache*
|
| 4 |
+
voc_bot
|
front_end.py
CHANGED
|
@@ -3,22 +3,45 @@ from rag import mongo_rag_tool
|
|
| 3 |
from gradio.themes.base import Base
|
| 4 |
|
| 5 |
# Create an instance of GradIO
|
| 6 |
-
|
| 7 |
-
|
| 8 |
with gr.Blocks(theme=Base(), title="Market Research and VOC bot") as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
gr.Markdown(
|
| 10 |
"""
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
with gr.Row():
|
| 15 |
-
button = gr.Button("Submit", variant="primary")
|
| 16 |
-
with gr.Column():
|
| 17 |
-
output1 = gr.Textbox(lines=1, max_lines=10, label="Answer:")
|
| 18 |
-
output2 = gr.Textbox(lines=1, max_lines=10, label="Sources:")
|
| 19 |
|
| 20 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
button
|
|
|
|
| 23 |
|
| 24 |
-
demo.launch()
|
|
|
|
| 3 |
from gradio.themes.base import Base
|
| 4 |
|
| 5 |
# Create an instance of GradIO
|
|
|
|
|
|
|
| 6 |
with gr.Blocks(theme=Base(), title="Market Research and VOC bot") as demo:
|
| 7 |
+
# A styled header for the app
|
| 8 |
+
gr.Markdown(
|
| 9 |
+
"""
|
| 10 |
+
<div style='text-align: center; font-size: 24px; font-weight: bold; margin-bottom: 20px;'>
|
| 11 |
+
Chat with your data
|
| 12 |
+
</div>
|
| 13 |
+
"""
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
# Input fields for the collection and the question, with descriptive text
|
| 17 |
gr.Markdown(
|
| 18 |
"""
|
| 19 |
+
<div style='text-align: left; font-size: 18px; margin-bottom: 10px;'>
|
| 20 |
+
Enter the collection and your query to get relevant answers:
|
| 21 |
+
</div>
|
| 22 |
+
"""
|
| 23 |
+
)
|
| 24 |
+
collection_textbox = gr.Textbox(label="Enter your Collection:", placeholder="e.g., market_data", lines=1)
|
| 25 |
+
query_textbox = gr.Textbox(label="Enter your Question:", placeholder="Type your question here...", lines=1)
|
| 26 |
+
|
| 27 |
+
# Submit button with some spacing and central alignment
|
| 28 |
with gr.Row():
|
| 29 |
+
button = gr.Button("Submit", variant="primary", size="lg")
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
# Output section for displaying the answer and sources one below the other
|
| 32 |
+
gr.Markdown(
|
| 33 |
+
"""
|
| 34 |
+
<div style='text-align: left; font-size: 18px; margin-bottom: 10px;'>
|
| 35 |
+
Output:
|
| 36 |
+
</div>
|
| 37 |
+
"""
|
| 38 |
+
)
|
| 39 |
+
# Using a Column to place the answer and source outputs one after the other
|
| 40 |
+
with gr.Column():
|
| 41 |
+
answer_output = gr.Textbox(lines=5, label="Answer:", max_lines=50)
|
| 42 |
+
source_output = gr.Textbox(lines=5, label="Sources:", max_lines=50)
|
| 43 |
|
| 44 |
+
# Connect the button to the function
|
| 45 |
+
button.click(mongo_rag_tool, inputs=[query_textbox, collection_textbox], outputs=[answer_output, source_output])
|
| 46 |
|
| 47 |
+
demo.launch()
|
rag.py
CHANGED
|
@@ -13,19 +13,18 @@ load_dotenv()
|
|
| 13 |
INDEX_NAME = "vector_index"
|
| 14 |
DATABASE_NAME = "scraped_data_db"
|
| 15 |
|
| 16 |
-
def mongo_rag_tool(query: str) -> str:
|
| 17 |
"""
|
| 18 |
This function is used to retrieve documents from a MongoDB database and then use the RAG model to answer the query.
|
| 19 |
The documents that are most semantically close to the query are returned.
|
| 20 |
args:
|
| 21 |
query: str: The query that you want to use to retrieve documents
|
| 22 |
collection_name: str: The name of the collection in the MongoDB database
|
| 23 |
-
output_filename: str: The name of the output file where the results will be saved
|
| 24 |
returns:
|
| 25 |
str: The answer to the query
|
| 26 |
"""
|
| 27 |
try:
|
| 28 |
-
collection_name = os.getenv("MONGODB_COLLECTION_NAME")
|
| 29 |
# Connect to the MongoDB database
|
| 30 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
| 31 |
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key, disallowed_special=(), model="text-embedding-3-small")
|
|
|
|
| 13 |
INDEX_NAME = "vector_index"
|
| 14 |
DATABASE_NAME = "scraped_data_db"
|
| 15 |
|
| 16 |
+
def mongo_rag_tool(query: str, collection_name: str) -> str:
|
| 17 |
"""
|
| 18 |
This function is used to retrieve documents from a MongoDB database and then use the RAG model to answer the query.
|
| 19 |
The documents that are most semantically close to the query are returned.
|
| 20 |
args:
|
| 21 |
query: str: The query that you want to use to retrieve documents
|
| 22 |
collection_name: str: The name of the collection in the MongoDB database
|
|
|
|
| 23 |
returns:
|
| 24 |
str: The answer to the query
|
| 25 |
"""
|
| 26 |
try:
|
| 27 |
+
#collection_name = os.getenv("MONGODB_COLLECTION_NAME")
|
| 28 |
# Connect to the MongoDB database
|
| 29 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
| 30 |
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key, disallowed_special=(), model="text-embedding-3-small")
|