from pathlib import Path from PIL import Image from transformers import AutoProcessor, AutoModel import torch # Load model and processor model = AutoModel.from_pretrained("cloudqi/cqi_text_to_image_pt_v0", trust_remote_code=True) processor = AutoProcessor.from_pretrained("cloudqi/cqi_text_to_image_pt_v0", trust_remote_code=True) def generate_image(prompt): inputs = processor(prompt, return_tensors="pt") with torch.no_grad(): output = model(**inputs).images[0] # assumes .images exists return Image.fromarray(output)