Spaces:
Sleeping
Sleeping
Commit
·
ef248b8
1
Parent(s):
6782572
add implementation
Browse files- multiclass_brier_score.py +59 -41
multiclass_brier_score.py
CHANGED
@@ -11,50 +11,58 @@
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
-
|
|
|
|
|
|
|
15 |
|
16 |
import evaluate
|
17 |
import datasets
|
18 |
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
26 |
}
|
27 |
"""
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
This new module is designed to solve this great ML task and is crafted with a lot of care.
|
32 |
"""
|
33 |
|
34 |
|
35 |
-
# TODO: Add description of the arguments of the module here
|
36 |
_KWARGS_DESCRIPTION = """
|
37 |
-
|
38 |
Args:
|
39 |
-
|
40 |
-
|
41 |
-
references: list of reference for each prediction. Each
|
42 |
-
reference should be a string with tokens separated by spaces.
|
43 |
Returns:
|
44 |
-
|
45 |
-
another_score: description of the second score,
|
46 |
Examples:
|
47 |
Examples should be written in doctest format, and should illustrate how
|
48 |
to use the function.
|
49 |
|
50 |
-
>>>
|
51 |
-
>>>
|
52 |
-
>>> print(
|
53 |
-
{'
|
54 |
-
"""
|
55 |
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
|
60 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
@@ -71,25 +79,35 @@ class multiclass_brier_score(evaluate.Metric):
|
|
71 |
inputs_description=_KWARGS_DESCRIPTION,
|
72 |
# This defines the format of each prediction and reference
|
73 |
features=datasets.Features({
|
74 |
-
'
|
75 |
-
'references': datasets.Value('
|
76 |
}),
|
77 |
-
# Homepage of the module for documentation
|
78 |
-
homepage="http://module.homepage",
|
79 |
# Additional links to the codebase or references
|
80 |
-
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
|
81 |
-
reference_urls=["
|
82 |
)
|
83 |
|
84 |
-
def _download_and_prepare(self, dl_manager):
|
85 |
-
"""Optional: download external resources useful to compute the scores"""
|
86 |
-
# TODO: Download external resources if needed
|
87 |
-
pass
|
88 |
|
89 |
-
def _compute(self,
|
90 |
-
"""
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
return {
|
94 |
-
"
|
95 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
+
|
15 |
+
"""brier_score metric for multiclass problem."""
|
16 |
+
|
17 |
+
import numpy as np
|
18 |
|
19 |
import evaluate
|
20 |
import datasets
|
21 |
|
22 |
|
23 |
+
_CITATION = """
|
24 |
+
@article{brier1950verification,
|
25 |
+
title={Verification of forecasts expressed in terms of probability},
|
26 |
+
author={Brier, Glenn W},
|
27 |
+
journal={Monthly weather review},
|
28 |
+
volume={78},
|
29 |
+
number={1},
|
30 |
+
pages={1--3},
|
31 |
+
year={1950}
|
32 |
}
|
33 |
"""
|
34 |
|
35 |
+
_DESCRIPTION = """
|
36 |
+
Measure to compare true observed labels with predicted probabilities in multiclass classification tasks.
|
|
|
37 |
"""
|
38 |
|
39 |
|
|
|
40 |
_KWARGS_DESCRIPTION = """
|
41 |
+
Multiclass Brier Score: Measure to compare true observed labels with predicted probabilities in multiclass classification tasks.
|
42 |
Args:
|
43 |
+
pred_probs: array-like of shape (n_sample, m_classes).
|
44 |
+
references: array-like array of shape (n_sample,).
|
|
|
|
|
45 |
Returns:
|
46 |
+
brier_score: float, average brier score over all samples.
|
|
|
47 |
Examples:
|
48 |
Examples should be written in doctest format, and should illustrate how
|
49 |
to use the function.
|
50 |
|
51 |
+
>>> brier_metric = multiclass_brier_score()
|
52 |
+
>>> brier_score = brier_metric.compute(pred_probs=[[0.0, 1.0, 0.0]], references=[1])
|
53 |
+
>>> print(brier_score)
|
54 |
+
{'brier_score': 0.0}
|
|
|
55 |
|
56 |
+
>>> brier_metric = multiclass_brier_score()
|
57 |
+
>>> brier_score = brier_metric.compute(pred_probs=[[0.1, 0.1, 0.8]], references=[2])
|
58 |
+
>>> print(round(brier_score['brier_score'], 2))
|
59 |
+
0.06
|
60 |
+
|
61 |
+
>>> brier_metric = multiclass_brier_score()
|
62 |
+
>>> brier_score = brier_metric.compute(pred_probs=[[0.1, 0.1, 0.8], [0.0, 1.0, 0.0]], references=[2, 1])
|
63 |
+
>>> print(round(brier_score['brier_score'], 2))
|
64 |
+
0.03
|
65 |
+
"""
|
66 |
|
67 |
|
68 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
|
|
79 |
inputs_description=_KWARGS_DESCRIPTION,
|
80 |
# This defines the format of each prediction and reference
|
81 |
features=datasets.Features({
|
82 |
+
'pred_probs': datasets.Sequence(datasets.Value("float")),
|
83 |
+
'references': datasets.Value('int32'),
|
84 |
}),
|
|
|
|
|
85 |
# Additional links to the codebase or references
|
86 |
+
#codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
|
87 |
+
reference_urls=["https://search.r-project.org/CRAN/refmans/mlr3measures/html/mbrier.html"]
|
88 |
)
|
89 |
|
|
|
|
|
|
|
|
|
90 |
|
91 |
+
def _compute(self, pred_probs: np.ndarray, references: np.ndarray):
|
92 |
+
"""
|
93 |
+
brier_score = 1/n * sum_{i=1}^n sum_{j=1}^m (y_{ij} - p{ij})^2
|
94 |
+
Args:
|
95 |
+
pred_probs: numpy array of shape (n, m) where n is the number of samples and m is the number of classes
|
96 |
+
references: numpy array of shape (n,) where n is the number of samples
|
97 |
+
"""
|
98 |
+
assert len(pred_probs) == len(references), "The length of the predictions and references should be the same"
|
99 |
+
pred_probs = np.array(pred_probs)
|
100 |
+
n = len(references)
|
101 |
+
m = pred_probs.shape[1]
|
102 |
+
# generate one-hot encoding for the references
|
103 |
+
references_onehot = np.zeros((n, m))
|
104 |
+
references_onehot[np.arange(n), references] = 1 # shape: (n, m)
|
105 |
+
brier_score = np.sum((references_onehot - pred_probs)**2) / float(n)
|
106 |
return {
|
107 |
+
"brier_score": brier_score,
|
108 |
+
}
|
109 |
+
|
110 |
+
|
111 |
+
if __name__ == "__main__":
|
112 |
+
import doctest
|
113 |
+
doctest.testmod()
|