|
from torch import nn |
|
import torch.nn.functional as nnf |
|
from transformers import GPT2Tokenizer, GPT2LMHeadModel |
|
import torch |
|
from typing import Tuple, List, Union, Optional |
|
import numpy as np |
|
|
|
|
|
N = type(None) |
|
V = np.array |
|
ARRAY = np.ndarray |
|
ARRAYS = Union[Tuple[ARRAY, ...], List[ARRAY]] |
|
VS = Union[Tuple[V, ...], List[V]] |
|
VN = Union[V, N] |
|
VNS = Union[VS, N] |
|
T = torch.Tensor |
|
TS = Union[Tuple[T, ...], List[T]] |
|
TN = Optional[T] |
|
TNS = Union[Tuple[TN, ...], List[TN]] |
|
TSN = Optional[TS] |
|
TA = Union[T, ARRAY] |
|
|
|
|
|
class ClipCaptionModel(nn.Module): |
|
|
|
def get_dummy_token(self, batch_size: int, device: torch.device) -> torch.Tensor: |
|
return torch.zeros(batch_size, self.prefix_length, dtype=torch.int64, device=device) |
|
|
|
def forward(self, tokens: torch.Tensor, prefix: torch.Tensor, mask: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None): |
|
embedding_text = self.gpt.transformer.wte(tokens) |
|
prefix_projections = self.clip_project(prefix).view(-1, self.prefix_length, self.gpt_embedding_size) |
|
embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1) |
|
if labels is not None: |
|
dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device) |
|
labels = torch.cat((dummy_token, tokens), dim=1) |
|
out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask) |
|
return out |
|
|
|
def __init__(self): |
|
super(ClipCaptionModel, self).__init__() |
|
self.prefix_length = 40 |
|
self.gpt = GPT2LMHeadModel.from_pretrained('gpt2') |
|
self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1] |
|
self.clip_project = TransformerMapper(640, self.gpt_embedding_size, 40, |
|
40, 8) |
|
|
|
|
|
|
|
class MLP(nn.Module): |
|
|
|
def forward(self, x: T) -> T: |
|
return self.model(x) |
|
|
|
def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh): |
|
super(MLP, self).__init__() |
|
layers = [] |
|
for i in range(len(sizes) -1): |
|
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias)) |
|
if i < len(sizes) - 2: |
|
layers.append(act()) |
|
self.model = nn.Sequential(*layers) |
|
|
|
|
|
class ClipCaptionPrefix(ClipCaptionModel): |
|
|
|
def parameters(self, recurse: bool = True): |
|
return self.clip_project.parameters() |
|
|
|
def train(self, mode: bool = True): |
|
super(ClipCaptionPrefix, self).train(mode) |
|
self.gpt.eval() |
|
return self |
|
|
|
|
|
class MlpTransformer(nn.Module): |
|
def __init__(self, in_dim, h_dim, out_d: Optional[int] = None, act=nnf.relu, dropout=0.): |
|
super().__init__() |
|
out_d = out_d if out_d is not None else in_dim |
|
self.fc1 = nn.Linear(in_dim, h_dim) |
|
self.act = act |
|
self.fc2 = nn.Linear(h_dim, out_d) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.dropout(x) |
|
x = self.fc2(x) |
|
x = self.dropout(x) |
|
return x |
|
|
|
|
|
class MultiHeadAttention(nn.Module): |
|
|
|
def __init__(self, dim_self, dim_ref, num_heads, bias=True, dropout=0.): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim_self // num_heads |
|
self.scale = head_dim ** -0.5 |
|
self.to_queries = nn.Linear(dim_self, dim_self, bias=bias) |
|
self.to_keys_values = nn.Linear(dim_ref, dim_self * 2, bias=bias) |
|
self.project = nn.Linear(dim_self, dim_self) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, x, y=None, mask=None): |
|
y = y if y is not None else x |
|
b, n, c = x.shape |
|
_, m, d = y.shape |
|
|
|
queries = self.to_queries(x).reshape(b, n, self.num_heads, c // self.num_heads) |
|
|
|
keys_values = self.to_keys_values(y).reshape(b, m, 2, self.num_heads, c // self.num_heads) |
|
keys, values = keys_values[:, :, 0], keys_values[:, :, 1] |
|
attention = torch.einsum('bnhd,bmhd->bnmh', queries, keys) * self.scale |
|
if mask is not None: |
|
if mask.dim() == 2: |
|
mask = mask.unsqueeze(1) |
|
attention = attention.masked_fill(mask.unsqueeze(3), float("-inf")) |
|
attention = attention.softmax(dim=2) |
|
out = torch.einsum('bnmh,bmhd->bnhd', attention, values).reshape(b, n, c) |
|
out = self.project(out) |
|
return out, attention |
|
|
|
|
|
class TransformerLayer(nn.Module): |
|
|
|
def forward_with_attention(self, x, y=None, mask=None): |
|
x_, attention = self.attn(self.norm1(x), y, mask) |
|
x = x + x_ |
|
x = x + self.mlp(self.norm2(x)) |
|
return x, attention |
|
|
|
def forward(self, x, y=None, mask=None): |
|
x = x + self.attn(self.norm1(x), y, mask)[0] |
|
x = x + self.mlp(self.norm2(x)) |
|
return x |
|
|
|
def __init__(self, dim_self, dim_ref, num_heads, mlp_ratio=4., bias=False, dropout=0., act=nnf.relu, |
|
norm_layer: nn.Module = nn.LayerNorm): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim_self) |
|
self.attn = MultiHeadAttention(dim_self, dim_ref, num_heads, bias=bias, dropout=dropout) |
|
self.norm2 = norm_layer(dim_self) |
|
self.mlp = MlpTransformer(dim_self, int(dim_self * mlp_ratio), act=act, dropout=dropout) |
|
|
|
|
|
class Transformer(nn.Module): |
|
|
|
def forward_with_attention(self, x, y=None, mask=None): |
|
attentions = [] |
|
for layer in self.layers: |
|
x, att = layer.forward_with_attention(x, y, mask) |
|
attentions.append(att) |
|
return x, attentions |
|
|
|
def forward(self, x, y=None, mask=None): |
|
for i, layer in enumerate(self.layers): |
|
if i % 2 == 0 and self.enc_dec: |
|
x = layer(x, y) |
|
elif self.enc_dec: |
|
x = layer(x, x, mask) |
|
else: |
|
x = layer(x, y, mask) |
|
return x |
|
|
|
def __init__(self, dim_self: int, num_heads: int, num_layers: int, dim_ref: Optional[int] = None, |
|
mlp_ratio: float = 2., act=nnf.relu, norm_layer: nn.Module = nn.LayerNorm, enc_dec: bool = False): |
|
super(Transformer, self).__init__() |
|
dim_ref = dim_ref if dim_ref is not None else dim_self |
|
self.enc_dec = enc_dec |
|
if enc_dec: |
|
num_layers = num_layers * 2 |
|
layers = [] |
|
for i in range(num_layers): |
|
if i % 2 == 0 and enc_dec: |
|
layers.append(TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act, norm_layer=norm_layer)) |
|
elif enc_dec: |
|
layers.append(TransformerLayer(dim_self, dim_self, num_heads, mlp_ratio, act=act, norm_layer=norm_layer)) |
|
else: |
|
layers.append(TransformerLayer(dim_self, dim_ref, num_heads, mlp_ratio, act=act, norm_layer=norm_layer)) |
|
self.layers = nn.ModuleList(layers) |
|
|
|
|
|
class TransformerMapper(nn.Module): |
|
|
|
def forward(self, x): |
|
x = self.linear(x).view(x.shape[0], self.clip_length, -1) |
|
prefix = self.prefix_const.unsqueeze(0).expand(x.shape[0], *self.prefix_const.shape) |
|
prefix = torch.cat((x, prefix), dim=1) |
|
out = self.transformer(prefix)[:, self.clip_length:] |
|
return out |
|
|
|
def __init__(self, dim_clip: int, dim_embedding: int, prefix_length: int, clip_length: int, num_layers: int = 8): |
|
super(TransformerMapper, self).__init__() |
|
self.clip_length = clip_length |
|
self.transformer = Transformer(dim_embedding, 8, num_layers) |
|
self.linear = nn.Linear(dim_clip, clip_length * dim_embedding) |
|
self.prefix_const = nn.Parameter(torch.randn(prefix_length, dim_embedding), requires_grad=True) |