|
import torch |
|
from typing import Tuple, List, Union, Optional |
|
import numpy as np |
|
|
|
|
|
def generate_beam(model, tokenizer, beam_size: int = 5, prompt=None, embed=None, |
|
entry_length=67, temperature=1., stop_token: str = '.'): |
|
|
|
model.eval() |
|
stop_token_index = tokenizer.encode(stop_token)[0] |
|
tokens = None |
|
scores = None |
|
device = next(model.parameters()).device |
|
seq_lengths = torch.ones(beam_size, device=device) |
|
is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool) |
|
with torch.no_grad(): |
|
if embed is not None: |
|
generated = embed |
|
else: |
|
if tokens is None: |
|
tokens = torch.tensor(tokenizer.encode(prompt)) |
|
tokens = tokens.unsqueeze(0).to(device) |
|
generated = model.gpt.transformer.wte(tokens) |
|
for i in range(entry_length): |
|
outputs = model.gpt(inputs_embeds=generated) |
|
logits = outputs.logits |
|
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) |
|
logits = logits.softmax(-1).log() |
|
if scores is None: |
|
scores, next_tokens = logits.topk(beam_size, -1) |
|
generated = generated.expand(beam_size, *generated.shape[1:]) |
|
next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0) |
|
if tokens is None: |
|
tokens = next_tokens |
|
else: |
|
tokens = tokens.expand(beam_size, *tokens.shape[1:]) |
|
tokens = torch.cat((tokens, next_tokens), dim=1) |
|
else: |
|
logits[is_stopped] = -float(np.inf) |
|
logits[is_stopped, 0] = 0 |
|
scores_sum = scores[:, None] + logits |
|
seq_lengths[~is_stopped] += 1 |
|
scores_sum_average = scores_sum / seq_lengths[:, None] |
|
scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(beam_size, -1) |
|
next_tokens_source = next_tokens // scores_sum.shape[1] |
|
seq_lengths = seq_lengths[next_tokens_source] |
|
next_tokens = next_tokens % scores_sum.shape[1] |
|
next_tokens = next_tokens.unsqueeze(1) |
|
tokens = tokens[next_tokens_source] |
|
tokens = torch.cat((tokens, next_tokens), dim=1) |
|
generated = generated[next_tokens_source] |
|
scores = scores_sum_average * seq_lengths |
|
is_stopped = is_stopped[next_tokens_source] |
|
next_token_embed = model.gpt.transformer.wte(next_tokens.squeeze()).view(generated.shape[0], 1, -1) |
|
generated = torch.cat((generated, next_token_embed), dim=1) |
|
is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze() |
|
if is_stopped.all(): |
|
break |
|
scores = scores / seq_lengths |
|
output_list = tokens.cpu().numpy() |
|
output_texts = [tokenizer.decode(output[:int(length)]) for output, length in zip(output_list, seq_lengths)] |
|
order = scores.argsort(descending=True) |
|
output_texts = [output_texts[i] for i in order] |
|
return output_texts |
|
|
|
|
|
def generate2( |
|
model, |
|
tokenizer, |
|
tokens=None, |
|
prompt=None, |
|
embed=None, |
|
entry_count=1, |
|
entry_length=67, |
|
top_p=0.8, |
|
temperature=1., |
|
stop_token: str = '.', |
|
): |
|
model.eval() |
|
generated_num = 0 |
|
generated_list = [] |
|
stop_token_index = tokenizer.encode(stop_token)[0] |
|
filter_value = -float("Inf") |
|
device = next(model.parameters()).device |
|
|
|
with torch.no_grad(): |
|
|
|
for entry_idx in trange(entry_count): |
|
if embed is not None: |
|
generated = embed |
|
else: |
|
if tokens is None: |
|
tokens = torch.tensor(tokenizer.encode(prompt)) |
|
tokens = tokens.unsqueeze(0).to(device) |
|
|
|
generated = model.gpt.transformer.wte(tokens) |
|
|
|
for i in range(entry_length): |
|
|
|
outputs = model.gpt(inputs_embeds=generated) |
|
logits = outputs.logits |
|
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) |
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True) |
|
cumulative_probs = torch.cumsum(nnf.softmax(sorted_logits, dim=-1), dim=-1) |
|
sorted_indices_to_remove = cumulative_probs > top_p |
|
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[ |
|
..., :-1 |
|
].clone() |
|
sorted_indices_to_remove[..., 0] = 0 |
|
|
|
indices_to_remove = sorted_indices[sorted_indices_to_remove] |
|
logits[:, indices_to_remove] = filter_value |
|
next_token = torch.argmax(logits, -1).unsqueeze(0) |
|
next_token_embed = model.gpt.transformer.wte(next_token) |
|
if tokens is None: |
|
tokens = next_token |
|
else: |
|
tokens = torch.cat((tokens, next_token), dim=1) |
|
generated = torch.cat((generated, next_token_embed), dim=1) |
|
if stop_token_index == next_token.item(): |
|
break |
|
|
|
output_list = list(tokens.squeeze().cpu().numpy()) |
|
output_text = tokenizer.decode(output_list) |
|
generated_list.append(output_text) |
|
|
|
return generated_list[0] |