import gradio as gr import torch from huggingface_hub import from_pretrained_fastai from pathlib import Path examples = ["./examples/image_1.png", "./examples/image_2.png", "./examples/image_3.png", "./examples/image_4.png", "./examples/image_5.png"] repo_id = "hugginglearners/rice_image_classification" path = Path("./") def get_y(r): return r["label"] def get_x(r): return path/r["fname"] learner = from_pretrained_fastai(repo_id) def inference(image): label_predict,_,probs = learner.predict(image) return f"This rice image is {label_predict} with {100*probs[torch.argmax(probs)].item():.2f}% probability" gr.Interface( fn=inference, title="Rice image classification", description = "Predict which type of rice belong to Arborio, Basmati, Ipsala, Jasmine, Karacadag", inputs="image", examples=examples, outputs=gr.Textbox(label='Prediction'), cache_examples=False, article = "Author: Vu Minh Chien", ).launch(debug=True, enable_queue=True)