test_space / app.py
hussamalafandi's picture
Remove save_history argument
4a57f52
import gradio as gr
from langchain.chat_models import init_chat_model
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage
model = init_chat_model("gemini-2.0-flash", model_provider="google_genai")
def respond(
user_input: str,
dialog_history: list[dict],
system_message: str,
max_new_tokens: int,
temperature: float,
top_p: float,
) -> str:
"""
Respond to user input using the model.
"""
# Set the model parameters
model.temperature = temperature
model.max_output_tokens = max_new_tokens
model.top_p = top_p
history_langchain_format = []
# Add the dialog history to the history
for msg in dialog_history:
if msg['role'] == "user":
history_langchain_format.append(
HumanMessage(content=msg['content']))
elif msg['role'] == "assistant":
history_langchain_format.append(AIMessage(content=msg['content']))
# Combine the system message, history, and user input into a single list
model_input = [SystemMessage(content=system_message)] + \
history_langchain_format + [HumanMessage(content=user_input)]
response = model.invoke(model_input)
return response.content
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
fn=respond,
type="messages",
# save_history=True,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.",
label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512,
step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7,
step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()