Spaces:
Running
Running
import gradio as gr | |
from langchain.chat_models import init_chat_model | |
from langchain_core.messages import AIMessage, HumanMessage, SystemMessage | |
model = init_chat_model("gemini-2.0-flash", model_provider="google_genai") | |
def respond( | |
user_input: str, | |
dialog_history: list[dict], | |
system_message: str, | |
max_new_tokens: int, | |
temperature: float, | |
top_p: float, | |
) -> str: | |
""" | |
Respond to user input using the model. | |
""" | |
# Set the model parameters | |
model.temperature = temperature | |
model.max_output_tokens = max_new_tokens | |
model.top_p = top_p | |
history_langchain_format = [] | |
# Add the dialog history to the history | |
for msg in dialog_history: | |
if msg['role'] == "user": | |
history_langchain_format.append( | |
HumanMessage(content=msg['content'])) | |
elif msg['role'] == "assistant": | |
history_langchain_format.append(AIMessage(content=msg['content'])) | |
# Combine the system message, history, and user input into a single list | |
model_input = [SystemMessage(content=system_message)] + \ | |
history_langchain_format + [HumanMessage(content=user_input)] | |
response = model.invoke(model_input) | |
return response.content | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
fn=respond, | |
type="messages", | |
# save_history=True, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", | |
label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, | |
step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, | |
step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |