Spaces:
Running
on
Zero
Running
on
Zero
import random | |
import gradio as gr | |
import numpy as np | |
import PIL.Image | |
import spaces | |
import torch | |
from diffusers import AutoencoderTiny, DiffusionPipeline | |
dtype = torch.bfloat16 | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) | |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
def infer( | |
prompt: str, | |
seed: int, | |
randomize_seed: bool, | |
width: int = 1024, | |
height: int = 1024, | |
guidance_scale: float = 3.5, | |
num_inference_steps: int = 28, | |
progress: gr.Progress = gr.Progress(track_tqdm=True), # noqa: ARG001, B008 | |
) -> tuple[PIL.Image.Image, int]: | |
"""Generate an image from a prompt using the Flux.1 [dev] model. | |
Args: | |
prompt: The prompt to generate an image from. | |
seed: The seed to use for the image generation. | |
randomize_seed: Whether to randomize the seed. | |
width: The width of the image. Defaults to 1024. | |
height: The height of the image. Defaults to 1024. | |
guidance_scale: The guidance scale to use for the image generation. Defaults to 3.5. | |
num_inference_steps: The number of inference steps to use for the image generation. Defaults to 28. | |
progress: Internal parameter used to display progress in the UI. This should not be set manually by the user. | |
Returns: | |
A tuple containing the generated image and the seed. | |
""" | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) # noqa: S311 | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt=prompt, | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
guidance_scale=guidance_scale, | |
).images[0] | |
return image, seed | |
examples = [ | |
"a tiny astronaut hatching from an egg on the moon", | |
"a cat holding a sign that says hello world", | |
"an anime illustration of a wiener schnitzel", | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown("""# FLUX.1 [dev] | |
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) | |
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] | |
""") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
submit_btn=True, | |
) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1, | |
maximum=15, | |
step=0.1, | |
value=3.5, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=28, | |
) | |
gr.Examples( | |
examples=examples, | |
fn=infer, | |
inputs=prompt, | |
outputs=[result, seed], | |
cache_examples=True, | |
cache_mode="lazy", | |
) | |
prompt.submit( | |
fn=infer, | |
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs=[result, seed], | |
) | |
if __name__ == "__main__": | |
demo.launch(mcp_server=True) | |