FLUX.1-dev / app.py
hysts's picture
hysts HF Staff
Update
6a99664
import random
import gradio as gr
import numpy as np
import PIL.Image
import spaces
import torch
from diffusers import AutoencoderTiny, DiffusionPipeline
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
@spaces.GPU(duration=75)
def infer(
prompt: str,
seed: int,
randomize_seed: bool,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3.5,
num_inference_steps: int = 28,
progress: gr.Progress = gr.Progress(track_tqdm=True), # noqa: ARG001, B008
) -> tuple[PIL.Image.Image, int]:
"""Generate an image from a prompt using the Flux.1 [dev] model.
Args:
prompt: The prompt to generate an image from.
seed: The seed to use for the image generation.
randomize_seed: Whether to randomize the seed.
width: The width of the image. Defaults to 1024.
height: The height of the image. Defaults to 1024.
guidance_scale: The guidance scale to use for the image generation. Defaults to 3.5.
num_inference_steps: The number of inference steps to use for the image generation. Defaults to 28.
progress: Internal parameter used to display progress in the UI. This should not be set manually by the user.
Returns:
A tuple containing the generated image and the seed.
"""
if randomize_seed:
seed = random.randint(0, MAX_SEED) # noqa: S311
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=guidance_scale,
).images[0]
return image, seed
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""# FLUX.1 [dev]
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
submit_btn=True,
)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=prompt,
outputs=[result, seed],
cache_examples=True,
cache_mode="lazy",
)
prompt.submit(
fn=infer,
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch(mcp_server=True)