Spaces:
Build error
Build error
Add files
Browse files- .gitmodules +3 -0
- app.py +190 -0
- insightface +1 -0
- requirements.txt +9 -0
.gitmodules
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[submodule "insightface"]
|
2 |
+
path = insightface
|
3 |
+
url = https://github.com/deepinsight/insightface
|
app.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import argparse
|
6 |
+
import functools
|
7 |
+
import os
|
8 |
+
import pathlib
|
9 |
+
import subprocess
|
10 |
+
import sys
|
11 |
+
import urllib.request
|
12 |
+
|
13 |
+
if os.environ.get('SYSTEM') == 'spaces':
|
14 |
+
import mim
|
15 |
+
mim.install('mmcv-full==1.3.3', is_yes=True)
|
16 |
+
|
17 |
+
subprocess.call('pip uninstall -y opencv-python'.split())
|
18 |
+
subprocess.call('pip uninstall -y opencv-python-headless'.split())
|
19 |
+
subprocess.call('pip install opencv-python-headless==4.5.5.64'.split())
|
20 |
+
subprocess.call('pip install terminaltables==3.1.0'.split())
|
21 |
+
subprocess.call('pip install mmpycocotools==12.0.3'.split())
|
22 |
+
|
23 |
+
subprocess.call('pip install insightface==0.6.2'.split())
|
24 |
+
|
25 |
+
|
26 |
+
import cv2
|
27 |
+
import gradio as gr
|
28 |
+
import huggingface_hub
|
29 |
+
import numpy as np
|
30 |
+
import torch
|
31 |
+
import torch.nn as nn
|
32 |
+
|
33 |
+
sys.path.insert(0, 'insightface/detection/scrfd')
|
34 |
+
|
35 |
+
from mmdet.apis import inference_detector, init_detector, show_result_pyplot
|
36 |
+
|
37 |
+
REPO_URL = 'https://github.com/deepinsight/insightface/tree/master/detection/scrfd'
|
38 |
+
TITLE = 'insightface Face Detection (SCRFD)'
|
39 |
+
DESCRIPTION = f'This is a demo for {REPO_URL}.'
|
40 |
+
ARTICLE = None
|
41 |
+
|
42 |
+
TOKEN = os.environ['TOKEN']
|
43 |
+
|
44 |
+
|
45 |
+
def parse_args() -> argparse.Namespace:
|
46 |
+
parser = argparse.ArgumentParser()
|
47 |
+
parser.add_argument('--face-score-slider-step', type=float, default=0.05)
|
48 |
+
parser.add_argument('--face-score-threshold', type=float, default=0.3)
|
49 |
+
parser.add_argument('--device', type=str, default='cpu')
|
50 |
+
parser.add_argument('--theme', type=str)
|
51 |
+
parser.add_argument('--live', action='store_true')
|
52 |
+
parser.add_argument('--share', action='store_true')
|
53 |
+
parser.add_argument('--port', type=int)
|
54 |
+
parser.add_argument('--disable-queue',
|
55 |
+
dest='enable_queue',
|
56 |
+
action='store_false')
|
57 |
+
parser.add_argument('--allow-flagging', type=str, default='never')
|
58 |
+
parser.add_argument('--allow-screenshot', action='store_true')
|
59 |
+
return parser.parse_args()
|
60 |
+
|
61 |
+
|
62 |
+
def load_model(model_size: str, device) -> nn.Module:
|
63 |
+
ckpt_path = huggingface_hub.hf_hub_download(
|
64 |
+
'hysts/insightface',
|
65 |
+
f'models/scrfd_{model_size}/model.pth',
|
66 |
+
use_auth_token=TOKEN)
|
67 |
+
scrfd_dir = 'insightface/detection/scrfd'
|
68 |
+
config_path = f'{scrfd_dir}/configs/scrfd/scrfd_{model_size}.py'
|
69 |
+
model = init_detector(config_path, ckpt_path, device.type)
|
70 |
+
return model
|
71 |
+
|
72 |
+
|
73 |
+
def update_test_pipeline(model: nn.Module, mode: int):
|
74 |
+
cfg = model.cfg
|
75 |
+
pipelines = cfg.data.test.pipeline
|
76 |
+
for pipeline in pipelines:
|
77 |
+
if pipeline.type == 'MultiScaleFlipAug':
|
78 |
+
if mode == 0: #640 scale
|
79 |
+
pipeline.img_scale = (640, 640)
|
80 |
+
if hasattr(pipeline, 'scale_factor'):
|
81 |
+
del pipeline.scale_factor
|
82 |
+
elif mode == 1: #for single scale in other pages
|
83 |
+
pipeline.img_scale = (1100, 1650)
|
84 |
+
if hasattr(pipeline, 'scale_factor'):
|
85 |
+
del pipeline.scale_factor
|
86 |
+
elif mode == 2: #original scale
|
87 |
+
pipeline.img_scale = None
|
88 |
+
pipeline.scale_factor = 1.0
|
89 |
+
transforms = pipeline.transforms
|
90 |
+
for transform in transforms:
|
91 |
+
if transform.type == 'Pad':
|
92 |
+
if mode != 2:
|
93 |
+
transform.size = pipeline.img_scale
|
94 |
+
if hasattr(transform, 'size_divisor'):
|
95 |
+
del transform.size_divisor
|
96 |
+
else:
|
97 |
+
transform.size = None
|
98 |
+
transform.size_divisor = 32
|
99 |
+
|
100 |
+
|
101 |
+
def detect(image: np.ndarray, model_size: str, mode: int,
|
102 |
+
face_score_threshold: float,
|
103 |
+
detectors: dict[str, nn.Module]) -> np.ndarray:
|
104 |
+
model = detectors[model_size]
|
105 |
+
update_test_pipeline(model, mode)
|
106 |
+
|
107 |
+
# RGB -> BGR
|
108 |
+
image = image[:, :, ::-1]
|
109 |
+
preds = inference_detector(model, image)
|
110 |
+
boxes = preds[0]
|
111 |
+
|
112 |
+
res = image.copy()
|
113 |
+
for box in boxes:
|
114 |
+
box, score = box[:4], box[4]
|
115 |
+
if score < face_score_threshold:
|
116 |
+
continue
|
117 |
+
box = np.round(box).astype(int)
|
118 |
+
|
119 |
+
line_width = max(2, int(3 * (box[2:] - box[:2]).max() / 256))
|
120 |
+
cv2.rectangle(res, tuple(box[:2]), tuple(box[2:]), (0, 255, 0),
|
121 |
+
line_width)
|
122 |
+
|
123 |
+
res = cv2.cvtColor(res, cv2.COLOR_BGR2RGB)
|
124 |
+
return res
|
125 |
+
|
126 |
+
|
127 |
+
def main():
|
128 |
+
gr.close_all()
|
129 |
+
|
130 |
+
args = parse_args()
|
131 |
+
device = torch.device(args.device)
|
132 |
+
|
133 |
+
model_sizes = [
|
134 |
+
'500m',
|
135 |
+
'1g',
|
136 |
+
'2.5g',
|
137 |
+
'10g',
|
138 |
+
'34g',
|
139 |
+
]
|
140 |
+
detectors = {
|
141 |
+
model_size: load_model(model_size, device=device)
|
142 |
+
for model_size in model_sizes
|
143 |
+
}
|
144 |
+
modes = [
|
145 |
+
'(640, 640)',
|
146 |
+
'(1100, 1650)',
|
147 |
+
'original',
|
148 |
+
]
|
149 |
+
|
150 |
+
func = functools.partial(detect, detectors=detectors)
|
151 |
+
func = functools.update_wrapper(func, detect)
|
152 |
+
|
153 |
+
image_path = pathlib.Path('selfie.jpg')
|
154 |
+
if not image_path.exists():
|
155 |
+
url = 'https://raw.githubusercontent.com/peiyunh/tiny/master/data/demo/selfie.jpg'
|
156 |
+
urllib.request.urlretrieve(url, image_path)
|
157 |
+
examples = [[image_path.as_posix(), '10g', modes[0], 0.3]]
|
158 |
+
|
159 |
+
gr.Interface(
|
160 |
+
func,
|
161 |
+
[
|
162 |
+
gr.inputs.Image(type='numpy', label='Input'),
|
163 |
+
gr.inputs.Radio(
|
164 |
+
model_sizes, type='value', default='10g', label='Model'),
|
165 |
+
gr.inputs.Radio(
|
166 |
+
modes, type='index', default=modes[0], label='Mode'),
|
167 |
+
gr.inputs.Slider(0,
|
168 |
+
1,
|
169 |
+
step=args.face_score_slider_step,
|
170 |
+
default=args.face_score_threshold,
|
171 |
+
label='Face Score Threshold'),
|
172 |
+
],
|
173 |
+
gr.outputs.Image(type='numpy', label='Output'),
|
174 |
+
examples=examples,
|
175 |
+
title=TITLE,
|
176 |
+
description=DESCRIPTION,
|
177 |
+
article=ARTICLE,
|
178 |
+
theme=args.theme,
|
179 |
+
allow_screenshot=args.allow_screenshot,
|
180 |
+
allow_flagging=args.allow_flagging,
|
181 |
+
live=args.live,
|
182 |
+
).launch(
|
183 |
+
enable_queue=args.enable_queue,
|
184 |
+
server_port=args.port,
|
185 |
+
share=args.share,
|
186 |
+
)
|
187 |
+
|
188 |
+
|
189 |
+
if __name__ == '__main__':
|
190 |
+
main()
|
insightface
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit eca1d9a6cd25653067e7293e27b8a2d0d2cd5415
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Cython==0.29.28
|
2 |
+
#insightface==0.6.2
|
3 |
+
#mmcv-full==1.3.3
|
4 |
+
numpy==1.22.3
|
5 |
+
onnxruntime==1.11.0
|
6 |
+
opencv-python-headless==4.5.5.64
|
7 |
+
openmim==0.1.5
|
8 |
+
torch==1.10.2
|
9 |
+
torchvision==0.11.3
|