iaravagni
commited on
Commit
·
40daefb
1
Parent(s):
83f27e8
update
Browse files- glucose_app.py +5 -5
glucose_app.py
CHANGED
@@ -210,7 +210,7 @@ if data_option == "Upload files":
|
|
210 |
show_tabs = True
|
211 |
|
212 |
elif data_option == "Sample A":
|
213 |
-
combined_data_path = '
|
214 |
combined_data = pd.read_csv(combined_data_path)
|
215 |
st.session_state.combined_data = combined_data
|
216 |
st.session_state.data_processed = True
|
@@ -218,7 +218,7 @@ elif data_option == "Sample A":
|
|
218 |
show_tabs = True
|
219 |
|
220 |
elif data_option == "Sample B":
|
221 |
-
combined_data_path = '
|
222 |
combined_data = pd.read_csv(combined_data_path)
|
223 |
st.session_state.combined_data = combined_data
|
224 |
st.session_state.data_processed = True
|
@@ -245,7 +245,7 @@ if show_tabs:
|
|
245 |
# Call naive model prediction functions
|
246 |
column_specs = get_column_specs()
|
247 |
prepared_data = prepare_data(combined_data, column_specs["timestamp_column"])
|
248 |
-
train_file = '
|
249 |
train_data = pd.read_csv(train_file)
|
250 |
train_data = prepare_data(train_data, column_specs["timestamp_column"])
|
251 |
predictions = zeroshot_eval(
|
@@ -315,7 +315,7 @@ if show_tabs:
|
|
315 |
if combined_data is not None:
|
316 |
X_test, y_test = format_dataset(combined_data, CONTEXT_LENGTH, PREDICTION_LENGTH)
|
317 |
|
318 |
-
model_output_path = "
|
319 |
xgb_model = joblib.load(model_output_path)
|
320 |
|
321 |
y_test_pred = xgb_model.predict(X_test)
|
@@ -377,7 +377,7 @@ if show_tabs:
|
|
377 |
column_specs = get_column_specs()
|
378 |
prepared_data = prepare_data(combined_data, column_specs["timestamp_column"])
|
379 |
|
380 |
-
train_file = '
|
381 |
train_data = pd.read_csv(train_file)
|
382 |
train_data = prepare_data(train_data, column_specs["timestamp_column"])
|
383 |
predictions = zeroshot_eval(
|
|
|
210 |
show_tabs = True
|
211 |
|
212 |
elif data_option == "Sample A":
|
213 |
+
combined_data_path = 'data/processed/samples/sample_A.csv'
|
214 |
combined_data = pd.read_csv(combined_data_path)
|
215 |
st.session_state.combined_data = combined_data
|
216 |
st.session_state.data_processed = True
|
|
|
218 |
show_tabs = True
|
219 |
|
220 |
elif data_option == "Sample B":
|
221 |
+
combined_data_path = 'data/processed/samples/sample_B.csv'
|
222 |
combined_data = pd.read_csv(combined_data_path)
|
223 |
st.session_state.combined_data = combined_data
|
224 |
st.session_state.data_processed = True
|
|
|
245 |
# Call naive model prediction functions
|
246 |
column_specs = get_column_specs()
|
247 |
prepared_data = prepare_data(combined_data, column_specs["timestamp_column"])
|
248 |
+
train_file = 'data/processed/train_dataset.csv'
|
249 |
train_data = pd.read_csv(train_file)
|
250 |
train_data = prepare_data(train_data, column_specs["timestamp_column"])
|
251 |
predictions = zeroshot_eval(
|
|
|
315 |
if combined_data is not None:
|
316 |
X_test, y_test = format_dataset(combined_data, CONTEXT_LENGTH, PREDICTION_LENGTH)
|
317 |
|
318 |
+
model_output_path = "models/xgb_model.pkl"
|
319 |
xgb_model = joblib.load(model_output_path)
|
320 |
|
321 |
y_test_pred = xgb_model.predict(X_test)
|
|
|
377 |
column_specs = get_column_specs()
|
378 |
prepared_data = prepare_data(combined_data, column_specs["timestamp_column"])
|
379 |
|
380 |
+
train_file = 'data/processed/train_dataset.csv'
|
381 |
train_data = pd.read_csv(train_file)
|
382 |
train_data = prepare_data(train_data, column_specs["timestamp_column"])
|
383 |
predictions = zeroshot_eval(
|