iaravagni commited on
Commit
40daefb
·
1 Parent(s): 83f27e8
Files changed (1) hide show
  1. glucose_app.py +5 -5
glucose_app.py CHANGED
@@ -210,7 +210,7 @@ if data_option == "Upload files":
210
  show_tabs = True
211
 
212
  elif data_option == "Sample A":
213
- combined_data_path = '../data/processed/samples/sample_A.csv'
214
  combined_data = pd.read_csv(combined_data_path)
215
  st.session_state.combined_data = combined_data
216
  st.session_state.data_processed = True
@@ -218,7 +218,7 @@ elif data_option == "Sample A":
218
  show_tabs = True
219
 
220
  elif data_option == "Sample B":
221
- combined_data_path = '../data/processed/samples/sample_B.csv'
222
  combined_data = pd.read_csv(combined_data_path)
223
  st.session_state.combined_data = combined_data
224
  st.session_state.data_processed = True
@@ -245,7 +245,7 @@ if show_tabs:
245
  # Call naive model prediction functions
246
  column_specs = get_column_specs()
247
  prepared_data = prepare_data(combined_data, column_specs["timestamp_column"])
248
- train_file = '../data/processed/train_dataset.csv'
249
  train_data = pd.read_csv(train_file)
250
  train_data = prepare_data(train_data, column_specs["timestamp_column"])
251
  predictions = zeroshot_eval(
@@ -315,7 +315,7 @@ if show_tabs:
315
  if combined_data is not None:
316
  X_test, y_test = format_dataset(combined_data, CONTEXT_LENGTH, PREDICTION_LENGTH)
317
 
318
- model_output_path = "../models/xgb_model.pkl"
319
  xgb_model = joblib.load(model_output_path)
320
 
321
  y_test_pred = xgb_model.predict(X_test)
@@ -377,7 +377,7 @@ if show_tabs:
377
  column_specs = get_column_specs()
378
  prepared_data = prepare_data(combined_data, column_specs["timestamp_column"])
379
 
380
- train_file = '../data/processed/train_dataset.csv'
381
  train_data = pd.read_csv(train_file)
382
  train_data = prepare_data(train_data, column_specs["timestamp_column"])
383
  predictions = zeroshot_eval(
 
210
  show_tabs = True
211
 
212
  elif data_option == "Sample A":
213
+ combined_data_path = 'data/processed/samples/sample_A.csv'
214
  combined_data = pd.read_csv(combined_data_path)
215
  st.session_state.combined_data = combined_data
216
  st.session_state.data_processed = True
 
218
  show_tabs = True
219
 
220
  elif data_option == "Sample B":
221
+ combined_data_path = 'data/processed/samples/sample_B.csv'
222
  combined_data = pd.read_csv(combined_data_path)
223
  st.session_state.combined_data = combined_data
224
  st.session_state.data_processed = True
 
245
  # Call naive model prediction functions
246
  column_specs = get_column_specs()
247
  prepared_data = prepare_data(combined_data, column_specs["timestamp_column"])
248
+ train_file = 'data/processed/train_dataset.csv'
249
  train_data = pd.read_csv(train_file)
250
  train_data = prepare_data(train_data, column_specs["timestamp_column"])
251
  predictions = zeroshot_eval(
 
315
  if combined_data is not None:
316
  X_test, y_test = format_dataset(combined_data, CONTEXT_LENGTH, PREDICTION_LENGTH)
317
 
318
+ model_output_path = "models/xgb_model.pkl"
319
  xgb_model = joblib.load(model_output_path)
320
 
321
  y_test_pred = xgb_model.predict(X_test)
 
377
  column_specs = get_column_specs()
378
  prepared_data = prepare_data(combined_data, column_specs["timestamp_column"])
379
 
380
+ train_file = 'data/processed/train_dataset.csv'
381
  train_data = pd.read_csv(train_file)
382
  train_data = prepare_data(train_data, column_specs["timestamp_column"])
383
  predictions = zeroshot_eval(