Spaces:
Runtime error
Runtime error
José Ángel González
commited on
Commit
·
ed1f9e1
1
Parent(s):
c563d70
improve distinction between Spanish and Spanish Mixed
Browse files- app.py +337 -223
- etc/languages_settings.yml +2 -2
app.py
CHANGED
|
@@ -8,6 +8,7 @@ from pathlib import Path
|
|
| 8 |
import pandas as pd
|
| 9 |
import streamlit as st
|
| 10 |
import plotly.express as px
|
|
|
|
| 11 |
|
| 12 |
from datasets import load_dataset
|
| 13 |
from huggingface_hub import CommitScheduler, hf_hub_download
|
|
@@ -20,7 +21,12 @@ from src.task_mappings import professional_mapping, semantic_categories
|
|
| 20 |
# -----------------------------------------------------------------------------
|
| 21 |
# Page configuration and global CSS styles for modern look and improved UX
|
| 22 |
# -----------------------------------------------------------------------------
|
| 23 |
-
st.set_page_config(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
st.markdown(
|
| 26 |
"""
|
|
@@ -68,8 +74,16 @@ request_folder = request_file.parent
|
|
| 68 |
LANGUAGES_SETTINGS = Path("etc/languages_settings.yml")
|
| 69 |
|
| 70 |
dataset_columns = [
|
| 71 |
-
"workshop",
|
| 72 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
]
|
| 74 |
model_columns = ["model_name", "model_type", "num_parameters"]
|
| 75 |
|
|
@@ -83,30 +97,42 @@ scheduler = CommitScheduler(
|
|
| 83 |
every=10,
|
| 84 |
)
|
| 85 |
|
|
|
|
| 86 |
def log_submission(input_dict: dict) -> None:
|
| 87 |
with scheduler.lock:
|
| 88 |
with request_file.open("a") as f:
|
| 89 |
f.write(json.dumps(input_dict))
|
| 90 |
f.write("\n")
|
| 91 |
|
|
|
|
| 92 |
def get_lang_columns(columns: list, lang: str):
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
@st.cache_data
|
| 97 |
def load_data(lang) -> pd.DataFrame:
|
| 98 |
try:
|
| 99 |
-
data = load_dataset(
|
|
|
|
|
|
|
| 100 |
task_columns = [col for col in data.columns if col not in model_columns]
|
| 101 |
task_lang_columns = get_lang_columns(task_columns, lang)
|
| 102 |
-
data[task_columns] = data[task_columns]*100
|
| 103 |
data = data[model_columns + task_lang_columns]
|
| 104 |
-
#data["Active"] = False
|
| 105 |
return data
|
| 106 |
except FileNotFoundError:
|
| 107 |
st.error("iberbench/lm-eval-results was not found in the hub 😕")
|
| 108 |
return pd.DataFrame()
|
| 109 |
|
|
|
|
| 110 |
def load_dataset_card(task) -> list:
|
| 111 |
name_repo = "iberbench/" + task
|
| 112 |
try:
|
|
@@ -130,16 +156,24 @@ def load_dataset_card(task) -> list:
|
|
| 130 |
|
| 131 |
|
| 132 |
def active_data(lang) -> pd.DataFrame:
|
| 133 |
-
return st.session_state[f"leaderboard_data_{lang}"][
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
def get_index(lang, row) -> pd.Series:
|
| 136 |
return active_data(lang).iloc[row].name
|
| 137 |
|
|
|
|
| 138 |
def commit(lang) -> None:
|
| 139 |
for row in st.session_state[f"edited_data_{lang}"]["edited_rows"]:
|
| 140 |
row_index = get_index(lang, row)
|
| 141 |
-
for key, value in st.session_state[f"edited_data_{lang}"][
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
|
| 145 |
# -----------------------------------------------------------------------------
|
|
@@ -172,10 +206,14 @@ def create_table_results(df_mean: pd.DataFrame):
|
|
| 172 |
|
| 173 |
def create_table_all_results(aggregated_df: pd.DataFrame):
|
| 174 |
combined_df = create_data_results_per_language()
|
| 175 |
-
df_lang= combined_df.pivot(
|
| 176 |
-
|
|
|
|
|
|
|
| 177 |
rank_value = []
|
| 178 |
-
for i in
|
|
|
|
|
|
|
| 179 |
if i == 1:
|
| 180 |
rank_value.append(f"{i} 🥇")
|
| 181 |
elif i == 2:
|
|
@@ -195,7 +233,7 @@ def create_table_all_results(aggregated_df: pd.DataFrame):
|
|
| 195 |
"model_type": st.column_config.TextColumn("Type 📌"),
|
| 196 |
"num_parameters": st.column_config.NumberColumn("Model Size 🔢"),
|
| 197 |
},
|
| 198 |
-
)
|
| 199 |
|
| 200 |
|
| 201 |
def create_scatter_chart(df: pd.DataFrame, id_: str):
|
|
@@ -206,40 +244,57 @@ def create_scatter_chart(df: pd.DataFrame, id_: str):
|
|
| 206 |
color="model_name",
|
| 207 |
size="num_parameters",
|
| 208 |
hover_data=["model_type"],
|
| 209 |
-
labels={"num_parameters": "Num parameters"}
|
| 210 |
)
|
| 211 |
fig.update_layout(template="plotly_white")
|
| 212 |
-
st.plotly_chart(
|
|
|
|
|
|
|
|
|
|
| 213 |
|
| 214 |
def create_radar_chart(df: pd.DataFrame, id_: str):
|
| 215 |
df = df.sort_values(by="Mean", ascending=False)
|
| 216 |
-
radar_df = pd.DataFrame(
|
| 217 |
-
"r": df["Mean"][:10],
|
| 218 |
-
|
| 219 |
-
})
|
| 220 |
fig = px.line_polar(
|
| 221 |
-
radar_df,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
)
|
| 223 |
fig.update_traces(fill="toself")
|
| 224 |
-
st.plotly_chart(
|
|
|
|
|
|
|
| 225 |
|
| 226 |
|
| 227 |
def create_pie_chart(df: pd.DataFrame, id_: str):
|
| 228 |
df_pie = df["model_type"].value_counts().reset_index()
|
| 229 |
df_pie.columns = ["model_type", "count"]
|
| 230 |
fig = px.pie(
|
| 231 |
-
df_pie,
|
| 232 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
)
|
| 234 |
-
st.plotly_chart(fig, use_container_width=True, key=id_ + str(random.random()))
|
| 235 |
|
| 236 |
|
| 237 |
def create_box_plot(df: pd.DataFrame, id_: str):
|
| 238 |
fig = px.box(
|
| 239 |
-
df,
|
| 240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
)
|
| 242 |
-
st.plotly_chart(fig, use_container_width=True, key=id_ + str(random.random()))
|
| 243 |
|
| 244 |
|
| 245 |
def get_summary_df(lang: str, task_types: list) -> pd.DataFrame:
|
|
@@ -247,8 +302,11 @@ def get_summary_df(lang: str, task_types: list) -> pd.DataFrame:
|
|
| 247 |
if not st.session_state[f"leaderboard_data_{lang}"].empty:
|
| 248 |
for t in task_types:
|
| 249 |
task_list = semantic_categories[t]
|
| 250 |
-
cols = [
|
| 251 |
-
|
|
|
|
|
|
|
|
|
|
| 252 |
if cols:
|
| 253 |
tmp = st.session_state[f"leaderboard_data_{lang}"][cols]
|
| 254 |
df[t] = tmp.mean(axis=1).round(2)
|
|
@@ -259,7 +317,6 @@ def get_summary_df(lang: str, task_types: list) -> pd.DataFrame:
|
|
| 259 |
return df
|
| 260 |
|
| 261 |
|
| 262 |
-
|
| 263 |
def get_all_languages_summary_df() -> pd.DataFrame:
|
| 264 |
"""Combine leaderboard summary data from all languages using get_summary_df."""
|
| 265 |
combined_df = pd.DataFrame()
|
|
@@ -269,7 +326,9 @@ def get_all_languages_summary_df() -> pd.DataFrame:
|
|
| 269 |
task_types = select_task_per_language(lang)
|
| 270 |
summary_df = get_summary_df(lang, task_types)
|
| 271 |
summary_df["language"] = lang
|
| 272 |
-
combined_df = pd.concat(
|
|
|
|
|
|
|
| 273 |
return combined_df
|
| 274 |
|
| 275 |
|
|
@@ -283,14 +342,16 @@ def create_results_visualization_lang(lang: str):
|
|
| 283 |
create_table_results(summary_df)
|
| 284 |
st.markdown("### Language plots 📊")
|
| 285 |
# Display the results table for the selected language
|
| 286 |
-
|
| 287 |
-
in_lang_tabs = st.tabs(
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
|
|
|
|
|
|
| 294 |
with in_lang_tabs[0]:
|
| 295 |
create_radar_chart(summary_df, lang + "in_radar")
|
| 296 |
with in_lang_tabs[1]:
|
|
@@ -301,29 +362,38 @@ def create_results_visualization_lang(lang: str):
|
|
| 301 |
create_box_plot_per_task_category(tasks_df, lang + "in_box_task_cat")
|
| 302 |
with in_lang_tabs[4]:
|
| 303 |
create_box_plot_per_semantic_category(tasks_df, lang + "in_box_sem_cat")
|
| 304 |
-
|
|
|
|
| 305 |
# -----------------------------------------------------------------------------
|
| 306 |
# Functions for other visualization sections
|
| 307 |
# -----------------------------------------------------------------------------
|
| 308 |
|
|
|
|
| 309 |
def select_task_per_language(lang: str):
|
| 310 |
types = []
|
| 311 |
for k, v in semantic_categories.items():
|
| 312 |
for vv in v:
|
| 313 |
task_name = vv.split("iberbench/")[1]
|
| 314 |
-
if task_name in list(
|
|
|
|
|
|
|
| 315 |
if k not in types:
|
| 316 |
types.append(k)
|
| 317 |
return types
|
| 318 |
|
|
|
|
| 319 |
def create_dataset_info_per_language(lang: str):
|
| 320 |
all_values = []
|
| 321 |
if not st.session_state[f"leaderboard_data_{lang}"].empty:
|
| 322 |
-
cols = [
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
if len(cols) > 1:
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
else:
|
| 328 |
values = load_dataset_card(cols[0])
|
| 329 |
all_values.append(values)
|
|
@@ -331,27 +401,50 @@ def create_dataset_info_per_language(lang: str):
|
|
| 331 |
st.dataframe(
|
| 332 |
df,
|
| 333 |
column_config={
|
| 334 |
-
"workshop": st.column_config.TextColumn(
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
"
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
"
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 344 |
},
|
| 345 |
hide_index=True,
|
| 346 |
)
|
| 347 |
else:
|
| 348 |
st.write("No data found to display on leaderboard 😔.")
|
| 349 |
|
|
|
|
| 350 |
def create_box_plot_per_task_category(df: pd.DataFrame, id_: str):
|
| 351 |
# Compute average performance for each professional category (using professional_mapping).
|
| 352 |
melt_vars = []
|
| 353 |
for category, tasks in professional_mapping.items():
|
| 354 |
-
relevant_cols = [
|
|
|
|
|
|
|
| 355 |
if relevant_cols:
|
| 356 |
df[category] = df[relevant_cols].mean(axis=1).round(2)
|
| 357 |
melt_vars.append(category)
|
|
@@ -359,18 +452,31 @@ def create_box_plot_per_task_category(df: pd.DataFrame, id_: str):
|
|
| 359 |
id_vars = model_columns.copy()
|
| 360 |
if "language" in df.columns:
|
| 361 |
id_vars.append("language")
|
| 362 |
-
df_melt = df.melt(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 363 |
fig = px.box(
|
| 364 |
-
df_melt,
|
| 365 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 366 |
)
|
| 367 |
-
|
| 368 |
|
| 369 |
def create_box_plot_per_semantic_category(df: pd.DataFrame, id_: str):
|
| 370 |
# Compute average performance for each semantic category defined in semantic_categories.
|
| 371 |
melt_vars = []
|
| 372 |
for category, tasks in semantic_categories.items():
|
| 373 |
-
relevant_cols = [
|
|
|
|
|
|
|
| 374 |
if relevant_cols:
|
| 375 |
df[category] = df[relevant_cols].mean(axis=1).round(2)
|
| 376 |
melt_vars.append(category)
|
|
@@ -378,19 +484,35 @@ def create_box_plot_per_semantic_category(df: pd.DataFrame, id_: str):
|
|
| 378 |
id_vars = model_columns.copy()
|
| 379 |
if "language" in df.columns:
|
| 380 |
id_vars.append("language")
|
| 381 |
-
df_melt = df.melt(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 382 |
fig = px.box(
|
| 383 |
-
df_melt,
|
| 384 |
-
|
|
|
|
|
|
|
|
|
|
| 385 |
)
|
| 386 |
-
st.plotly_chart(
|
|
|
|
|
|
|
|
|
|
| 387 |
|
| 388 |
def create_histogram(df: pd.DataFrame, id_: str):
|
| 389 |
fig = px.histogram(
|
| 390 |
-
df,
|
|
|
|
|
|
|
|
|
|
| 391 |
)
|
| 392 |
fig.update_layout(template="plotly_white")
|
| 393 |
-
st.plotly_chart(
|
|
|
|
|
|
|
| 394 |
|
| 395 |
|
| 396 |
def create_data_results_per_language() -> pd.DataFrame:
|
|
@@ -404,7 +526,7 @@ def create_data_results_per_language() -> pd.DataFrame:
|
|
| 404 |
lang = key.split("leaderboard_data_")[1]
|
| 405 |
temp_df["language"] = lang
|
| 406 |
combined_df = pd.concat([combined_df, temp_df], ignore_index=True)
|
| 407 |
-
|
| 408 |
if combined_df.empty:
|
| 409 |
st.warning("No data available for any language ⚠️.")
|
| 410 |
return
|
|
@@ -415,28 +537,36 @@ def create_data_results_per_language() -> pd.DataFrame:
|
|
| 415 |
model_columns = ["model_name", "model_type", "num_parameters"]
|
| 416 |
# Exclude metadata, language, and any non-numeric columns.
|
| 417 |
performance_cols = [
|
| 418 |
-
col
|
| 419 |
-
|
|
|
|
| 420 |
and pd.api.types.is_numeric_dtype(combined_df[col])
|
| 421 |
]
|
| 422 |
if performance_cols:
|
| 423 |
-
combined_df["Mean"] =
|
|
|
|
|
|
|
| 424 |
else:
|
| 425 |
-
st.warning(
|
|
|
|
|
|
|
| 426 |
return
|
| 427 |
return combined_df
|
| 428 |
-
|
| 429 |
-
|
|
|
|
| 430 |
# Create a boxplot with performance (Mean) per language.
|
| 431 |
combined_df = create_data_results_per_language()
|
| 432 |
fig = px.box(
|
| 433 |
-
combined_df,
|
| 434 |
-
x="language",
|
| 435 |
-
y="Mean",
|
| 436 |
points="all",
|
| 437 |
labels={"language": "Language", "Mean": "Performance (%)"},
|
| 438 |
)
|
| 439 |
-
st.plotly_chart(
|
|
|
|
|
|
|
| 440 |
|
| 441 |
|
| 442 |
def get_all_languages_summary_df() -> pd.DataFrame:
|
|
@@ -448,7 +578,9 @@ def get_all_languages_summary_df() -> pd.DataFrame:
|
|
| 448 |
task_types = select_task_per_language(lang)
|
| 449 |
summary_df = get_summary_df(lang, task_types)
|
| 450 |
summary_df["language"] = lang
|
| 451 |
-
combined_df = pd.concat(
|
|
|
|
|
|
|
| 452 |
return combined_df
|
| 453 |
|
| 454 |
|
|
@@ -458,14 +590,17 @@ def get_all_languages_aggregated_summary_df() -> pd.DataFrame:
|
|
| 458 |
across languages. Use this aggregated data for radar, scatter, pie, box, and histogram plots.
|
| 459 |
"""
|
| 460 |
df = get_all_languages_summary_df()
|
| 461 |
-
agg_df = df.groupby("model_name", as_index=False).agg(
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
|
|
|
|
|
|
| 467 |
return agg_df
|
| 468 |
|
|
|
|
| 469 |
def get_all_languages_raw_df() -> pd.DataFrame:
|
| 470 |
"""
|
| 471 |
Combine the raw leaderboard data from all languages.
|
|
@@ -484,8 +619,12 @@ def get_all_languages_raw_df() -> pd.DataFrame:
|
|
| 484 |
# -----------------------------------------------------------------------------
|
| 485 |
# Sidebar for Navigation and Global Settings
|
| 486 |
# -----------------------------------------------------------------------------
|
| 487 |
-
st.sidebar.markdown(
|
| 488 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 489 |
st.sidebar.markdown("---")
|
| 490 |
st.sidebar.markdown(
|
| 491 |
"""
|
|
@@ -496,17 +635,16 @@ st.sidebar.markdown(
|
|
| 496 |
unsafe_allow_html=True,
|
| 497 |
)
|
| 498 |
|
|
|
|
| 499 |
def load_languages_set():
|
| 500 |
with open(LANGUAGES_SETTINGS, "r") as f:
|
| 501 |
return yaml_load(f)
|
| 502 |
|
|
|
|
| 503 |
lang_set = load_languages_set()
|
| 504 |
|
| 505 |
for lang in lang_set.keys():
|
| 506 |
-
|
| 507 |
-
data = load_data("Spanish")
|
| 508 |
-
else:
|
| 509 |
-
data = load_data(lang)
|
| 510 |
if f"leaderboard_data_{lang}" not in st.session_state:
|
| 511 |
st.session_state[f"leaderboard_data_{lang}"] = data
|
| 512 |
|
|
@@ -514,29 +652,38 @@ for lang in lang_set.keys():
|
|
| 514 |
# Main Content based on Navigation
|
| 515 |
# -----------------------------------------------------------------------------
|
| 516 |
if menu == "Leaderboard 📊":
|
| 517 |
-
st.markdown(
|
| 518 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 519 |
st.markdown("### General ranking 🏆")
|
| 520 |
-
|
| 521 |
# ---------------------------
|
| 522 |
# All-language plots section
|
| 523 |
# ---------------------------
|
| 524 |
-
|
| 525 |
aggregated_df = get_all_languages_aggregated_summary_df()
|
| 526 |
create_table_all_results(aggregated_df)
|
| 527 |
st.markdown("### General plots 📊")
|
| 528 |
# Use raw data for Fundamental vs Professional and Task Category plots.
|
| 529 |
raw_all_df = get_all_languages_raw_df()
|
| 530 |
-
all_lang_tabs = st.tabs(
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
|
|
|
|
|
|
| 540 |
with all_lang_tabs[0]:
|
| 541 |
create_radar_chart(aggregated_df, "all_radar")
|
| 542 |
with all_lang_tabs[1]:
|
|
@@ -554,13 +701,19 @@ if menu == "Leaderboard 📊":
|
|
| 554 |
create_box_plot_per_semantic_category(raw_all_df, "all_box_sem_cat")
|
| 555 |
with all_lang_tabs[7]:
|
| 556 |
create_box_plot_per_language("all_box_language")
|
| 557 |
-
|
| 558 |
-
# Results per language
|
| 559 |
st.markdown("---")
|
| 560 |
st.markdown("### Language ranking 🏆")
|
| 561 |
-
lang_choice = st.selectbox(
|
|
|
|
|
|
|
| 562 |
if lang_choice == "Spanish":
|
| 563 |
-
variations = [
|
|
|
|
|
|
|
|
|
|
|
|
|
| 564 |
tabs_var = st.tabs(variations)
|
| 565 |
for var, tab in zip(variations, tabs_var):
|
| 566 |
with tab:
|
|
@@ -569,11 +722,15 @@ if menu == "Leaderboard 📊":
|
|
| 569 |
create_results_visualization_lang(lang_choice)
|
| 570 |
|
| 571 |
elif menu == "Submit Model 🚀":
|
| 572 |
-
st.markdown(
|
|
|
|
|
|
|
|
|
|
| 573 |
st.markdown("## How to submit a model 📤")
|
| 574 |
|
| 575 |
# CSS
|
| 576 |
-
st.markdown(
|
|
|
|
| 577 |
<style>
|
| 578 |
.card-container {
|
| 579 |
max-width: 300px;
|
|
@@ -611,7 +768,9 @@ elif menu == "Submit Model 🚀":
|
|
| 611 |
margin-left: 8px;
|
| 612 |
}
|
| 613 |
</style>
|
| 614 |
-
""",
|
|
|
|
|
|
|
| 615 |
|
| 616 |
def render_card(content):
|
| 617 |
html = f"""
|
|
@@ -643,7 +802,10 @@ elif menu == "Submit Model 🚀":
|
|
| 643 |
index = row * num_columns + col
|
| 644 |
if index < len(guide_info_list):
|
| 645 |
with cols[col]:
|
| 646 |
-
st.markdown(
|
|
|
|
|
|
|
|
|
|
| 647 |
|
| 648 |
st.markdown("## Submission form 📝")
|
| 649 |
with st.form("submit_model_form", clear_on_submit=True):
|
|
@@ -655,7 +817,10 @@ elif menu == "Submit Model 🚀":
|
|
| 655 |
"Description ✍️",
|
| 656 |
help="Add a description of the proposed model for the evaluation to help prioritize its evaluation.",
|
| 657 |
)
|
| 658 |
-
user_contact = st.text_input(
|
|
|
|
|
|
|
|
|
|
| 659 |
precision_option = st.selectbox(
|
| 660 |
"Choose precision format 🔢:",
|
| 661 |
help="Size limits vary by precision. Choose carefully as incorrect precision can cause evaluation errors.",
|
|
@@ -668,7 +833,11 @@ elif menu == "Submit Model 🚀":
|
|
| 668 |
options=["Original", "Adapter", "Delta"],
|
| 669 |
index=0,
|
| 670 |
)
|
| 671 |
-
base_model_name = st.text_input(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 672 |
model_type = st.selectbox(
|
| 673 |
"Choose model type 🔍:",
|
| 674 |
help="🟢 Pretrained: Base models, 🔶 Fine-tuned: Domain-specific, 💬 Chat: Conversational, 🤝 Merge: Combined weights.",
|
|
@@ -678,7 +847,11 @@ elif menu == "Submit Model 🚀":
|
|
| 678 |
if submit_button:
|
| 679 |
use_chat_template = True if model_type == "💬 Chat" else False
|
| 680 |
validation_error = validate_model(
|
| 681 |
-
model_name,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 682 |
)
|
| 683 |
if validation_error is not None:
|
| 684 |
st.error(validation_error)
|
|
@@ -698,121 +871,62 @@ elif menu == "Submit Model 🚀":
|
|
| 698 |
log_submission(input_dict)
|
| 699 |
st.success("Your request has been sent successfully 🎉.")
|
| 700 |
except Exception as e:
|
| 701 |
-
st.error(
|
|
|
|
|
|
|
| 702 |
|
| 703 |
elif menu == "Datasets 📚":
|
| 704 |
-
st.markdown(
|
|
|
|
|
|
|
|
|
|
| 705 |
st.markdown("### Check the datasets 🔍")
|
| 706 |
-
lang_iber = [
|
| 707 |
-
|
| 708 |
-
|
| 709 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 710 |
tabs_var = st.tabs(variations)
|
| 711 |
for var, tab in zip(variations, tabs_var):
|
| 712 |
with tab:
|
| 713 |
-
|
| 714 |
-
create_dataset_info_per_language("Spanish")
|
| 715 |
-
else:
|
| 716 |
-
create_dataset_info_per_language(var)
|
| 717 |
else:
|
| 718 |
create_dataset_info_per_language(lang_choice)
|
| 719 |
st.markdown("### Task mappings 🔄")
|
| 720 |
-
st.markdown(
|
| 721 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 722 |
with tab1:
|
| 723 |
-
st.json(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 724 |
with tab2:
|
| 725 |
-
st.json(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 726 |
|
| 727 |
elif menu == "About ℹ️":
|
| 728 |
-
st.markdown(
|
| 729 |
-
|
| 730 |
-
|
| 731 |
-
|
| 732 |
-
|
| 733 |
-
|
| 734 |
-
### 📂 What are the data sources?
|
| 735 |
-
|
| 736 |
-
IberBench contains datasets from prominent workshops in the field such as [IberLEF@SEPLN](https://sepln2024.infor.uva.es/eventos/iberlef-es/) or [PAN@CLEF](https://pan.webis.de/clef24/pan24-web/index.html), as well as stablished existing benchmarks as those from HiTZ, UPF, BSC, CiTIUS-USC, among others, with the aim to incorporate standardized and consistent evaluation within this context, enhancing the value of the data and models derived from this effort.
|
| 737 |
-
|
| 738 |
-
We strictly adhere to all established guidelines and regulations concerning the use and publication of this data. Specifically:
|
| 739 |
-
|
| 740 |
-
- The collected datasets are published on 🤗HuggingFace private repositories, with appropriate credit given to the authors in the model card.
|
| 741 |
-
- Under no circumstances we claim ownership of the datasets.
|
| 742 |
-
- The test splits of the datasets are kept private to avoid leakage from IberBench side.
|
| 743 |
-
|
| 744 |
-
In any publication or presentation resulting from work with this data, we recognize the importance of citing and crediting to the organizing teams that crafted the datasets used at IberBench.
|
| 745 |
-
|
| 746 |
-
### 🙋 How can I join to IberBench?
|
| 747 |
-
|
| 748 |
-
IberBench comprises a committee composed of specialists in NLP, language ethics, and gender discrimination, drawn from both academia and industry, which will oversee the development of the project, ensuring its quality and relevance.
|
| 749 |
-
|
| 750 |
-
To be part of this committee, you can ask to join the [IberBench organization at 🤗HuggingFace](https://huggingface.co/iberbench). Your request will be validated by experts already belonging to the organization.
|
| 751 |
-
|
| 752 |
-
### 🤝 How can I contribute to IberBench?
|
| 753 |
-
|
| 754 |
-
First, the initial committee will gather all the datasets from prominent workshops. From this, you can contribute with new datasets to the IberBench organization. The process is as follows:
|
| 755 |
-
|
| 756 |
-
1. Open a new discussion in the [IberBench discussions space](https://huggingface.co/spaces/iberbench/README/discussions), linking to an existing dataset in the 🤗HuggingFace hub and explaining why the inclusion is relevant.
|
| 757 |
-
2. Discuss with the committee for the approval or rejection of the dataset.
|
| 758 |
-
3. If approval: your dataset will be included into the IberBench datasets, and will be used to evaluate LLMs in the IberBench leaderboard.
|
| 759 |
-
|
| 760 |
-
IberBench will never claim ownership over the dataset, the original author will receive all credits.
|
| 761 |
-
|
| 762 |
-
### 💬 Social networks
|
| 763 |
-
|
| 764 |
-
You can reach us at:
|
| 765 |
-
|
| 766 |
-
- **X**: [https://x.com/IberBench](https://x.com/IberBench)
|
| 767 |
-
- **🤗 Discussions**: [https://huggingface.co/spaces/iberbench/README/discussions](https://huggingface.co/spaces/iberbench/README/discussions)
|
| 768 |
-
|
| 769 |
-
### 🫶 Acknowledgements
|
| 770 |
-
|
| 771 |
-
We are incredibly grateful to the amazing teams behind the datasets from workshops like IberLEF, IberEval, and TASS under the umbrella of the [SEPLN](http://www.sepln.org/sepln), as well as the established benchmarks from HiTZ, UPF, BSC, CiTIUS-USC, among others. Their hard work and dedication to advancing NLP have made this benchmark possible. Huge thanks for sharing your invaluable resources with the community! 🚀👏
|
| 772 |
-
|
| 773 |
-
IberBench has been funded by the Valencian Institute for Business Competitiveness (IVACE). </br>
|
| 774 |
-
|
| 775 |
-
<style>
|
| 776 |
-
body {
|
| 777 |
-
margin: 0;
|
| 778 |
-
display: flex;
|
| 779 |
-
flex-direction: column;
|
| 780 |
-
min-height: 100vh;
|
| 781 |
-
}
|
| 782 |
-
.footer {
|
| 783 |
-
margin-top: auto;
|
| 784 |
-
display: flex;
|
| 785 |
-
flex-direction: column;
|
| 786 |
-
align-items: center;
|
| 787 |
-
text-align: center;
|
| 788 |
-
width: 100%;
|
| 789 |
-
background: white;
|
| 790 |
-
padding: 5px 0;
|
| 791 |
-
}
|
| 792 |
-
.footer p {
|
| 793 |
-
margin: 0;
|
| 794 |
-
font-size: 16px;
|
| 795 |
-
}
|
| 796 |
-
.logos {
|
| 797 |
-
display: flex;
|
| 798 |
-
justify-content: center;
|
| 799 |
-
align-items: center; /* Align images properly */
|
| 800 |
-
gap: 20px;
|
| 801 |
-
}
|
| 802 |
-
.logos img {
|
| 803 |
-
display: block;
|
| 804 |
-
margin: 0;
|
| 805 |
-
padding: 0;
|
| 806 |
-
max-height: 100px; /* Ensures both images have the same height */
|
| 807 |
-
width: auto; /* Keeps aspect ratio */
|
| 808 |
-
}
|
| 809 |
-
</style>
|
| 810 |
-
</br>
|
| 811 |
-
<div class="footer">
|
| 812 |
-
<p>Developed by Symanto with ❤️</p>
|
| 813 |
-
<div class="logos">
|
| 814 |
-
<img src="https://www.ivace.es/images/logo2-ivace.PNG">
|
| 815 |
-
<img src="https://www.symanto.com/wp-content/uploads/Logos/symanto.svg">
|
| 816 |
-
</div>
|
| 817 |
-
</div>
|
| 818 |
-
""", unsafe_allow_html=True)
|
|
|
|
| 8 |
import pandas as pd
|
| 9 |
import streamlit as st
|
| 10 |
import plotly.express as px
|
| 11 |
+
import plotly.graph_objects as go
|
| 12 |
|
| 13 |
from datasets import load_dataset
|
| 14 |
from huggingface_hub import CommitScheduler, hf_hub_download
|
|
|
|
| 21 |
# -----------------------------------------------------------------------------
|
| 22 |
# Page configuration and global CSS styles for modern look and improved UX
|
| 23 |
# -----------------------------------------------------------------------------
|
| 24 |
+
st.set_page_config(
|
| 25 |
+
page_title="IberBench",
|
| 26 |
+
layout="wide",
|
| 27 |
+
initial_sidebar_state="expanded",
|
| 28 |
+
page_icon="🌍",
|
| 29 |
+
)
|
| 30 |
|
| 31 |
st.markdown(
|
| 32 |
"""
|
|
|
|
| 74 |
LANGUAGES_SETTINGS = Path("etc/languages_settings.yml")
|
| 75 |
|
| 76 |
dataset_columns = [
|
| 77 |
+
"workshop",
|
| 78 |
+
"shared_task",
|
| 79 |
+
"year",
|
| 80 |
+
"task_type",
|
| 81 |
+
"language",
|
| 82 |
+
"url",
|
| 83 |
+
"language_variety",
|
| 84 |
+
"problem_type",
|
| 85 |
+
"num_labels",
|
| 86 |
+
"labels",
|
| 87 |
]
|
| 88 |
model_columns = ["model_name", "model_type", "num_parameters"]
|
| 89 |
|
|
|
|
| 97 |
every=10,
|
| 98 |
)
|
| 99 |
|
| 100 |
+
|
| 101 |
def log_submission(input_dict: dict) -> None:
|
| 102 |
with scheduler.lock:
|
| 103 |
with request_file.open("a") as f:
|
| 104 |
f.write(json.dumps(input_dict))
|
| 105 |
f.write("\n")
|
| 106 |
|
| 107 |
+
|
| 108 |
def get_lang_columns(columns: list, lang: str):
|
| 109 |
+
# Mixed needs to return all the columns that ends
|
| 110 |
+
# with the language, but doesn't have variation at the end
|
| 111 |
+
if "Mixed" in lang:
|
| 112 |
+
lang = lang.lower().split(" ")[0]
|
| 113 |
+
return [col for col in columns if col.endswith(lang)]
|
| 114 |
+
else:
|
| 115 |
+
lang_norm = lang.lower().replace(" ", "_")
|
| 116 |
+
return [col for col in columns if lang_norm in col]
|
| 117 |
+
|
| 118 |
|
| 119 |
@st.cache_data
|
| 120 |
def load_data(lang) -> pd.DataFrame:
|
| 121 |
try:
|
| 122 |
+
data = load_dataset(
|
| 123 |
+
"iberbench/lm-eval-results", token=st.secrets["HF_TOKEN"]
|
| 124 |
+
)["train"].to_pandas()
|
| 125 |
task_columns = [col for col in data.columns if col not in model_columns]
|
| 126 |
task_lang_columns = get_lang_columns(task_columns, lang)
|
| 127 |
+
data[task_columns] = data[task_columns] * 100
|
| 128 |
data = data[model_columns + task_lang_columns]
|
| 129 |
+
# data["Active"] = False
|
| 130 |
return data
|
| 131 |
except FileNotFoundError:
|
| 132 |
st.error("iberbench/lm-eval-results was not found in the hub 😕")
|
| 133 |
return pd.DataFrame()
|
| 134 |
|
| 135 |
+
|
| 136 |
def load_dataset_card(task) -> list:
|
| 137 |
name_repo = "iberbench/" + task
|
| 138 |
try:
|
|
|
|
| 156 |
|
| 157 |
|
| 158 |
def active_data(lang) -> pd.DataFrame:
|
| 159 |
+
return st.session_state[f"leaderboard_data_{lang}"][
|
| 160 |
+
st.session_state[f"leaderboard_data_{lang}"]["Active"] == True
|
| 161 |
+
].copy()
|
| 162 |
+
|
| 163 |
|
| 164 |
def get_index(lang, row) -> pd.Series:
|
| 165 |
return active_data(lang).iloc[row].name
|
| 166 |
|
| 167 |
+
|
| 168 |
def commit(lang) -> None:
|
| 169 |
for row in st.session_state[f"edited_data_{lang}"]["edited_rows"]:
|
| 170 |
row_index = get_index(lang, row)
|
| 171 |
+
for key, value in st.session_state[f"edited_data_{lang}"][
|
| 172 |
+
"edited_rows"
|
| 173 |
+
][row].items():
|
| 174 |
+
st.session_state[f"leaderboard_data_{lang}"].at[
|
| 175 |
+
row_index, key
|
| 176 |
+
] = value
|
| 177 |
|
| 178 |
|
| 179 |
# -----------------------------------------------------------------------------
|
|
|
|
| 206 |
|
| 207 |
def create_table_all_results(aggregated_df: pd.DataFrame):
|
| 208 |
combined_df = create_data_results_per_language()
|
| 209 |
+
df_lang = combined_df.pivot(
|
| 210 |
+
index="model_name", columns="language", values="Mean"
|
| 211 |
+
)
|
| 212 |
+
aggregated_df[df_lang.columns] = df_lang[df_lang.columns].values
|
| 213 |
rank_value = []
|
| 214 |
+
for i in (
|
| 215 |
+
aggregated_df["Mean"].rank(method="dense", ascending=False).astype(int)
|
| 216 |
+
):
|
| 217 |
if i == 1:
|
| 218 |
rank_value.append(f"{i} 🥇")
|
| 219 |
elif i == 2:
|
|
|
|
| 233 |
"model_type": st.column_config.TextColumn("Type 📌"),
|
| 234 |
"num_parameters": st.column_config.NumberColumn("Model Size 🔢"),
|
| 235 |
},
|
| 236 |
+
)
|
| 237 |
|
| 238 |
|
| 239 |
def create_scatter_chart(df: pd.DataFrame, id_: str):
|
|
|
|
| 244 |
color="model_name",
|
| 245 |
size="num_parameters",
|
| 246 |
hover_data=["model_type"],
|
| 247 |
+
labels={"num_parameters": "Num parameters"},
|
| 248 |
)
|
| 249 |
fig.update_layout(template="plotly_white")
|
| 250 |
+
st.plotly_chart(
|
| 251 |
+
fig, use_container_width=True, key=id_ + str(random.random())
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
|
| 255 |
def create_radar_chart(df: pd.DataFrame, id_: str):
|
| 256 |
df = df.sort_values(by="Mean", ascending=False)
|
| 257 |
+
radar_df = pd.DataFrame(
|
| 258 |
+
{"r": df["Mean"][:10], "theta": df["model_name"][:10]}
|
| 259 |
+
)
|
|
|
|
| 260 |
fig = px.line_polar(
|
| 261 |
+
radar_df,
|
| 262 |
+
r="r",
|
| 263 |
+
theta="theta",
|
| 264 |
+
line_close=True,
|
| 265 |
+
markers=True,
|
| 266 |
)
|
| 267 |
fig.update_traces(fill="toself")
|
| 268 |
+
st.plotly_chart(
|
| 269 |
+
fig, use_container_width=True, key=id_ + str(random.random())
|
| 270 |
+
)
|
| 271 |
|
| 272 |
|
| 273 |
def create_pie_chart(df: pd.DataFrame, id_: str):
|
| 274 |
df_pie = df["model_type"].value_counts().reset_index()
|
| 275 |
df_pie.columns = ["model_type", "count"]
|
| 276 |
fig = px.pie(
|
| 277 |
+
df_pie,
|
| 278 |
+
values="count",
|
| 279 |
+
names="model_type",
|
| 280 |
+
labels={"model_type": "Model type"},
|
| 281 |
+
)
|
| 282 |
+
st.plotly_chart(
|
| 283 |
+
fig, use_container_width=True, key=id_ + str(random.random())
|
| 284 |
)
|
|
|
|
| 285 |
|
| 286 |
|
| 287 |
def create_box_plot(df: pd.DataFrame, id_: str):
|
| 288 |
fig = px.box(
|
| 289 |
+
df,
|
| 290 |
+
x="model_type",
|
| 291 |
+
y="Mean",
|
| 292 |
+
points="all",
|
| 293 |
+
labels={"model_type": "Model type"},
|
| 294 |
+
)
|
| 295 |
+
st.plotly_chart(
|
| 296 |
+
fig, use_container_width=True, key=id_ + str(random.random())
|
| 297 |
)
|
|
|
|
| 298 |
|
| 299 |
|
| 300 |
def get_summary_df(lang: str, task_types: list) -> pd.DataFrame:
|
|
|
|
| 302 |
if not st.session_state[f"leaderboard_data_{lang}"].empty:
|
| 303 |
for t in task_types:
|
| 304 |
task_list = semantic_categories[t]
|
| 305 |
+
cols = [
|
| 306 |
+
col
|
| 307 |
+
for col in st.session_state[f"leaderboard_data_{lang}"].columns
|
| 308 |
+
if "iberbench/" + col in task_list
|
| 309 |
+
]
|
| 310 |
if cols:
|
| 311 |
tmp = st.session_state[f"leaderboard_data_{lang}"][cols]
|
| 312 |
df[t] = tmp.mean(axis=1).round(2)
|
|
|
|
| 317 |
return df
|
| 318 |
|
| 319 |
|
|
|
|
| 320 |
def get_all_languages_summary_df() -> pd.DataFrame:
|
| 321 |
"""Combine leaderboard summary data from all languages using get_summary_df."""
|
| 322 |
combined_df = pd.DataFrame()
|
|
|
|
| 326 |
task_types = select_task_per_language(lang)
|
| 327 |
summary_df = get_summary_df(lang, task_types)
|
| 328 |
summary_df["language"] = lang
|
| 329 |
+
combined_df = pd.concat(
|
| 330 |
+
[combined_df, summary_df], ignore_index=True
|
| 331 |
+
)
|
| 332 |
return combined_df
|
| 333 |
|
| 334 |
|
|
|
|
| 342 |
create_table_results(summary_df)
|
| 343 |
st.markdown("### Language plots 📊")
|
| 344 |
# Display the results table for the selected language
|
| 345 |
+
|
| 346 |
+
in_lang_tabs = st.tabs(
|
| 347 |
+
[
|
| 348 |
+
"Top 10 performance 🥇",
|
| 349 |
+
"Performance vs. size 📏",
|
| 350 |
+
"Performance per type 💡",
|
| 351 |
+
"Fundamental vs industry ⚖️",
|
| 352 |
+
"Performance per task category 📈",
|
| 353 |
+
]
|
| 354 |
+
)
|
| 355 |
with in_lang_tabs[0]:
|
| 356 |
create_radar_chart(summary_df, lang + "in_radar")
|
| 357 |
with in_lang_tabs[1]:
|
|
|
|
| 362 |
create_box_plot_per_task_category(tasks_df, lang + "in_box_task_cat")
|
| 363 |
with in_lang_tabs[4]:
|
| 364 |
create_box_plot_per_semantic_category(tasks_df, lang + "in_box_sem_cat")
|
| 365 |
+
|
| 366 |
+
|
| 367 |
# -----------------------------------------------------------------------------
|
| 368 |
# Functions for other visualization sections
|
| 369 |
# -----------------------------------------------------------------------------
|
| 370 |
|
| 371 |
+
|
| 372 |
def select_task_per_language(lang: str):
|
| 373 |
types = []
|
| 374 |
for k, v in semantic_categories.items():
|
| 375 |
for vv in v:
|
| 376 |
task_name = vv.split("iberbench/")[1]
|
| 377 |
+
if task_name in list(
|
| 378 |
+
st.session_state[f"leaderboard_data_{lang}"].columns
|
| 379 |
+
):
|
| 380 |
if k not in types:
|
| 381 |
types.append(k)
|
| 382 |
return types
|
| 383 |
|
| 384 |
+
|
| 385 |
def create_dataset_info_per_language(lang: str):
|
| 386 |
all_values = []
|
| 387 |
if not st.session_state[f"leaderboard_data_{lang}"].empty:
|
| 388 |
+
cols = [
|
| 389 |
+
col
|
| 390 |
+
for col in st.session_state[f"leaderboard_data_{lang}"].columns
|
| 391 |
+
if col not in model_columns
|
| 392 |
+
]
|
| 393 |
if len(cols) > 1:
|
| 394 |
+
for task in cols[:-1]:
|
| 395 |
+
values = load_dataset_card(task)
|
| 396 |
+
all_values.append(values)
|
| 397 |
else:
|
| 398 |
values = load_dataset_card(cols[0])
|
| 399 |
all_values.append(values)
|
|
|
|
| 401 |
st.dataframe(
|
| 402 |
df,
|
| 403 |
column_config={
|
| 404 |
+
"workshop": st.column_config.TextColumn(
|
| 405 |
+
"Workshop 🏫", help="Workshop to belong to the shared task"
|
| 406 |
+
),
|
| 407 |
+
"shared_task": st.column_config.TextColumn(
|
| 408 |
+
"Shared Task 📋", help="Shared Task name"
|
| 409 |
+
),
|
| 410 |
+
"year": st.column_config.TextColumn(
|
| 411 |
+
"Year 📅", help="Year of the shared task"
|
| 412 |
+
),
|
| 413 |
+
"task_type": st.column_config.TextColumn(
|
| 414 |
+
"Task Type 🔖", help="Shared Task type"
|
| 415 |
+
),
|
| 416 |
+
"language": st.column_config.TextColumn(
|
| 417 |
+
"Language 🌐", help="Shared Task language"
|
| 418 |
+
),
|
| 419 |
+
"url": st.column_config.ListColumn(
|
| 420 |
+
"Task URL 🔗", help="Shared Task url"
|
| 421 |
+
),
|
| 422 |
+
"language_variety": st.column_config.TextColumn(
|
| 423 |
+
"Language Variety 🗣️", help="Shared Task language variety"
|
| 424 |
+
),
|
| 425 |
+
"problem_type": st.column_config.TextColumn(
|
| 426 |
+
"Problem Type ❓", help="Shared Task problem type"
|
| 427 |
+
),
|
| 428 |
+
"num_labels": st.column_config.NumberColumn(
|
| 429 |
+
"Number of Labels 🔢", help="Shared Task number of labels"
|
| 430 |
+
),
|
| 431 |
+
"labels": st.column_config.ListColumn(
|
| 432 |
+
"Labels 🏷️", help="Shared Task labels"
|
| 433 |
+
),
|
| 434 |
},
|
| 435 |
hide_index=True,
|
| 436 |
)
|
| 437 |
else:
|
| 438 |
st.write("No data found to display on leaderboard 😔.")
|
| 439 |
|
| 440 |
+
|
| 441 |
def create_box_plot_per_task_category(df: pd.DataFrame, id_: str):
|
| 442 |
# Compute average performance for each professional category (using professional_mapping).
|
| 443 |
melt_vars = []
|
| 444 |
for category, tasks in professional_mapping.items():
|
| 445 |
+
relevant_cols = [
|
| 446 |
+
col for col in df.columns if "iberbench/" + col in tasks
|
| 447 |
+
]
|
| 448 |
if relevant_cols:
|
| 449 |
df[category] = df[relevant_cols].mean(axis=1).round(2)
|
| 450 |
melt_vars.append(category)
|
|
|
|
| 452 |
id_vars = model_columns.copy()
|
| 453 |
if "language" in df.columns:
|
| 454 |
id_vars.append("language")
|
| 455 |
+
df_melt = df.melt(
|
| 456 |
+
id_vars=id_vars,
|
| 457 |
+
value_vars=melt_vars,
|
| 458 |
+
var_name="Task Category",
|
| 459 |
+
value_name="Performance",
|
| 460 |
+
)
|
| 461 |
fig = px.box(
|
| 462 |
+
df_melt,
|
| 463 |
+
x="Task Category",
|
| 464 |
+
y="Performance",
|
| 465 |
+
points="all",
|
| 466 |
+
labels={"Performance": "Performance (%)"},
|
| 467 |
+
)
|
| 468 |
+
st.plotly_chart(
|
| 469 |
+
fig, use_container_width=True, key=id_ + str(random.random())
|
| 470 |
)
|
| 471 |
+
|
| 472 |
|
| 473 |
def create_box_plot_per_semantic_category(df: pd.DataFrame, id_: str):
|
| 474 |
# Compute average performance for each semantic category defined in semantic_categories.
|
| 475 |
melt_vars = []
|
| 476 |
for category, tasks in semantic_categories.items():
|
| 477 |
+
relevant_cols = [
|
| 478 |
+
col for col in df.columns if "iberbench/" + col in tasks
|
| 479 |
+
]
|
| 480 |
if relevant_cols:
|
| 481 |
df[category] = df[relevant_cols].mean(axis=1).round(2)
|
| 482 |
melt_vars.append(category)
|
|
|
|
| 484 |
id_vars = model_columns.copy()
|
| 485 |
if "language" in df.columns:
|
| 486 |
id_vars.append("language")
|
| 487 |
+
df_melt = df.melt(
|
| 488 |
+
id_vars=id_vars,
|
| 489 |
+
value_vars=melt_vars,
|
| 490 |
+
var_name="Task Category",
|
| 491 |
+
value_name="Performance",
|
| 492 |
+
)
|
| 493 |
fig = px.box(
|
| 494 |
+
df_melt,
|
| 495 |
+
x="Task Category",
|
| 496 |
+
y="Performance",
|
| 497 |
+
points="all",
|
| 498 |
+
labels={"Performance": "Performance (%)"},
|
| 499 |
)
|
| 500 |
+
st.plotly_chart(
|
| 501 |
+
fig, use_container_width=True, key=id_ + str(random.random())
|
| 502 |
+
)
|
| 503 |
+
|
| 504 |
|
| 505 |
def create_histogram(df: pd.DataFrame, id_: str):
|
| 506 |
fig = px.histogram(
|
| 507 |
+
df,
|
| 508 |
+
x="num_parameters",
|
| 509 |
+
nbins=20,
|
| 510 |
+
labels={"num_parameters": "Num parameters", "count": "Count"},
|
| 511 |
)
|
| 512 |
fig.update_layout(template="plotly_white")
|
| 513 |
+
st.plotly_chart(
|
| 514 |
+
fig, use_container_width=True, key=id_ + str(random.random())
|
| 515 |
+
)
|
| 516 |
|
| 517 |
|
| 518 |
def create_data_results_per_language() -> pd.DataFrame:
|
|
|
|
| 526 |
lang = key.split("leaderboard_data_")[1]
|
| 527 |
temp_df["language"] = lang
|
| 528 |
combined_df = pd.concat([combined_df, temp_df], ignore_index=True)
|
| 529 |
+
|
| 530 |
if combined_df.empty:
|
| 531 |
st.warning("No data available for any language ⚠️.")
|
| 532 |
return
|
|
|
|
| 537 |
model_columns = ["model_name", "model_type", "num_parameters"]
|
| 538 |
# Exclude metadata, language, and any non-numeric columns.
|
| 539 |
performance_cols = [
|
| 540 |
+
col
|
| 541 |
+
for col in combined_df.columns
|
| 542 |
+
if col not in model_columns + ["language", "Active"]
|
| 543 |
and pd.api.types.is_numeric_dtype(combined_df[col])
|
| 544 |
]
|
| 545 |
if performance_cols:
|
| 546 |
+
combined_df["Mean"] = (
|
| 547 |
+
combined_df[performance_cols].mean(axis=1).round(2)
|
| 548 |
+
)
|
| 549 |
else:
|
| 550 |
+
st.warning(
|
| 551 |
+
"No numeric task performance columns available to compute 'Mean' ⚠️."
|
| 552 |
+
)
|
| 553 |
return
|
| 554 |
return combined_df
|
| 555 |
+
|
| 556 |
+
|
| 557 |
+
def create_box_plot_per_language(id_: str):
|
| 558 |
# Create a boxplot with performance (Mean) per language.
|
| 559 |
combined_df = create_data_results_per_language()
|
| 560 |
fig = px.box(
|
| 561 |
+
combined_df,
|
| 562 |
+
x="language",
|
| 563 |
+
y="Mean",
|
| 564 |
points="all",
|
| 565 |
labels={"language": "Language", "Mean": "Performance (%)"},
|
| 566 |
)
|
| 567 |
+
st.plotly_chart(
|
| 568 |
+
fig, use_container_width=True, key=id_ + str(random.random())
|
| 569 |
+
)
|
| 570 |
|
| 571 |
|
| 572 |
def get_all_languages_summary_df() -> pd.DataFrame:
|
|
|
|
| 578 |
task_types = select_task_per_language(lang)
|
| 579 |
summary_df = get_summary_df(lang, task_types)
|
| 580 |
summary_df["language"] = lang
|
| 581 |
+
combined_df = pd.concat(
|
| 582 |
+
[combined_df, summary_df], ignore_index=True
|
| 583 |
+
)
|
| 584 |
return combined_df
|
| 585 |
|
| 586 |
|
|
|
|
| 590 |
across languages. Use this aggregated data for radar, scatter, pie, box, and histogram plots.
|
| 591 |
"""
|
| 592 |
df = get_all_languages_summary_df()
|
| 593 |
+
agg_df = df.groupby("model_name", as_index=False).agg(
|
| 594 |
+
{
|
| 595 |
+
"model_type": "first", # choose an aggregation that makes sense
|
| 596 |
+
"num_parameters": "mean", # average model size across languages
|
| 597 |
+
"Mean": "mean", # average performance
|
| 598 |
+
}
|
| 599 |
+
)
|
| 600 |
+
agg_df["Mean"] = agg_df["Mean"].round(2)
|
| 601 |
return agg_df
|
| 602 |
|
| 603 |
+
|
| 604 |
def get_all_languages_raw_df() -> pd.DataFrame:
|
| 605 |
"""
|
| 606 |
Combine the raw leaderboard data from all languages.
|
|
|
|
| 619 |
# -----------------------------------------------------------------------------
|
| 620 |
# Sidebar for Navigation and Global Settings
|
| 621 |
# -----------------------------------------------------------------------------
|
| 622 |
+
st.sidebar.markdown(
|
| 623 |
+
"<h2 style='text-align: center;'>IberBench 🌍</h2>", unsafe_allow_html=True
|
| 624 |
+
)
|
| 625 |
+
menu = st.sidebar.radio(
|
| 626 |
+
"", ["Leaderboard 📊", "Submit Model 🚀", "Datasets 📚", "About ℹ️"]
|
| 627 |
+
)
|
| 628 |
st.sidebar.markdown("---")
|
| 629 |
st.sidebar.markdown(
|
| 630 |
"""
|
|
|
|
| 635 |
unsafe_allow_html=True,
|
| 636 |
)
|
| 637 |
|
| 638 |
+
|
| 639 |
def load_languages_set():
|
| 640 |
with open(LANGUAGES_SETTINGS, "r") as f:
|
| 641 |
return yaml_load(f)
|
| 642 |
|
| 643 |
+
|
| 644 |
lang_set = load_languages_set()
|
| 645 |
|
| 646 |
for lang in lang_set.keys():
|
| 647 |
+
data = load_data(lang)
|
|
|
|
|
|
|
|
|
|
| 648 |
if f"leaderboard_data_{lang}" not in st.session_state:
|
| 649 |
st.session_state[f"leaderboard_data_{lang}"] = data
|
| 650 |
|
|
|
|
| 652 |
# Main Content based on Navigation
|
| 653 |
# -----------------------------------------------------------------------------
|
| 654 |
if menu == "Leaderboard 📊":
|
| 655 |
+
st.markdown(
|
| 656 |
+
"<div class='main-header'><h1>Leaderboard 📊</h1></div>",
|
| 657 |
+
unsafe_allow_html=True,
|
| 658 |
+
)
|
| 659 |
+
lang_iber = [
|
| 660 |
+
k
|
| 661 |
+
for k, v in lang_set.items()
|
| 662 |
+
if v["category"] == "Iberian Peninsula languages"
|
| 663 |
+
]
|
| 664 |
st.markdown("### General ranking 🏆")
|
| 665 |
+
|
| 666 |
# ---------------------------
|
| 667 |
# All-language plots section
|
| 668 |
# ---------------------------
|
| 669 |
+
# Use aggregated data for plots where each model must appear once with averaged values.
|
| 670 |
aggregated_df = get_all_languages_aggregated_summary_df()
|
| 671 |
create_table_all_results(aggregated_df)
|
| 672 |
st.markdown("### General plots 📊")
|
| 673 |
# Use raw data for Fundamental vs Professional and Task Category plots.
|
| 674 |
raw_all_df = get_all_languages_raw_df()
|
| 675 |
+
all_lang_tabs = st.tabs(
|
| 676 |
+
[
|
| 677 |
+
"Top 10 performance 🥇",
|
| 678 |
+
"Performance vs. size 📏",
|
| 679 |
+
"Type distribution 🎨",
|
| 680 |
+
"Performance per type 💡",
|
| 681 |
+
"Distribution of sizes 📊",
|
| 682 |
+
"Fundamental vs industry ⚖️",
|
| 683 |
+
"Performance per task category 📈",
|
| 684 |
+
"Performance per language 🌐",
|
| 685 |
+
]
|
| 686 |
+
)
|
| 687 |
with all_lang_tabs[0]:
|
| 688 |
create_radar_chart(aggregated_df, "all_radar")
|
| 689 |
with all_lang_tabs[1]:
|
|
|
|
| 701 |
create_box_plot_per_semantic_category(raw_all_df, "all_box_sem_cat")
|
| 702 |
with all_lang_tabs[7]:
|
| 703 |
create_box_plot_per_language("all_box_language")
|
| 704 |
+
|
| 705 |
+
# Results per language
|
| 706 |
st.markdown("---")
|
| 707 |
st.markdown("### Language ranking 🏆")
|
| 708 |
+
lang_choice = st.selectbox(
|
| 709 |
+
"Select a language 🌐:", list(lang_iber), key="lang_leaderboard"
|
| 710 |
+
)
|
| 711 |
if lang_choice == "Spanish":
|
| 712 |
+
variations = [
|
| 713 |
+
k
|
| 714 |
+
for k, v in lang_set.items()
|
| 715 |
+
if v["category"] in ["Spanish Variations languages"]
|
| 716 |
+
]
|
| 717 |
tabs_var = st.tabs(variations)
|
| 718 |
for var, tab in zip(variations, tabs_var):
|
| 719 |
with tab:
|
|
|
|
| 722 |
create_results_visualization_lang(lang_choice)
|
| 723 |
|
| 724 |
elif menu == "Submit Model 🚀":
|
| 725 |
+
st.markdown(
|
| 726 |
+
"<div class='main-header'><h1>Submit Your Model 🚀</h1></div>",
|
| 727 |
+
unsafe_allow_html=True,
|
| 728 |
+
)
|
| 729 |
st.markdown("## How to submit a model 📤")
|
| 730 |
|
| 731 |
# CSS
|
| 732 |
+
st.markdown(
|
| 733 |
+
"""
|
| 734 |
<style>
|
| 735 |
.card-container {
|
| 736 |
max-width: 300px;
|
|
|
|
| 768 |
margin-left: 8px;
|
| 769 |
}
|
| 770 |
</style>
|
| 771 |
+
""",
|
| 772 |
+
unsafe_allow_html=True,
|
| 773 |
+
)
|
| 774 |
|
| 775 |
def render_card(content):
|
| 776 |
html = f"""
|
|
|
|
| 802 |
index = row * num_columns + col
|
| 803 |
if index < len(guide_info_list):
|
| 804 |
with cols[col]:
|
| 805 |
+
st.markdown(
|
| 806 |
+
render_card(guide_info_list[index]),
|
| 807 |
+
unsafe_allow_html=True,
|
| 808 |
+
)
|
| 809 |
|
| 810 |
st.markdown("## Submission form 📝")
|
| 811 |
with st.form("submit_model_form", clear_on_submit=True):
|
|
|
|
| 817 |
"Description ✍️",
|
| 818 |
help="Add a description of the proposed model for the evaluation to help prioritize its evaluation.",
|
| 819 |
)
|
| 820 |
+
user_contact = st.text_input(
|
| 821 |
+
"Your Contact Email 📧",
|
| 822 |
+
help="User e-mail to contact when there are updates.",
|
| 823 |
+
)
|
| 824 |
precision_option = st.selectbox(
|
| 825 |
"Choose precision format 🔢:",
|
| 826 |
help="Size limits vary by precision. Choose carefully as incorrect precision can cause evaluation errors.",
|
|
|
|
| 833 |
options=["Original", "Adapter", "Delta"],
|
| 834 |
index=0,
|
| 835 |
)
|
| 836 |
+
base_model_name = st.text_input(
|
| 837 |
+
"Base model (if applicable) 🏗️",
|
| 838 |
+
help="Required for delta weights or adapters. This helps calculate total parameter count.",
|
| 839 |
+
value="",
|
| 840 |
+
)
|
| 841 |
model_type = st.selectbox(
|
| 842 |
"Choose model type 🔍:",
|
| 843 |
help="🟢 Pretrained: Base models, 🔶 Fine-tuned: Domain-specific, 💬 Chat: Conversational, 🤝 Merge: Combined weights.",
|
|
|
|
| 847 |
if submit_button:
|
| 848 |
use_chat_template = True if model_type == "💬 Chat" else False
|
| 849 |
validation_error = validate_model(
|
| 850 |
+
model_name,
|
| 851 |
+
precision_option,
|
| 852 |
+
base_model_name,
|
| 853 |
+
weight_type_option,
|
| 854 |
+
use_chat_template,
|
| 855 |
)
|
| 856 |
if validation_error is not None:
|
| 857 |
st.error(validation_error)
|
|
|
|
| 871 |
log_submission(input_dict)
|
| 872 |
st.success("Your request has been sent successfully 🎉.")
|
| 873 |
except Exception as e:
|
| 874 |
+
st.error(
|
| 875 |
+
f"Failed to send your request: {e}. Please try again later."
|
| 876 |
+
)
|
| 877 |
|
| 878 |
elif menu == "Datasets 📚":
|
| 879 |
+
st.markdown(
|
| 880 |
+
"<div class='main-header'><h1>Dataset Information 📚</h1></div>",
|
| 881 |
+
unsafe_allow_html=True,
|
| 882 |
+
)
|
| 883 |
st.markdown("### Check the datasets 🔍")
|
| 884 |
+
lang_iber = [
|
| 885 |
+
k
|
| 886 |
+
for k, v in lang_set.items()
|
| 887 |
+
if v["category"] == "Iberian Peninsula languages"
|
| 888 |
+
]
|
| 889 |
+
lang_choice = st.selectbox(
|
| 890 |
+
"Select a language 🌐:", list(lang_iber), key="lang_dataset"
|
| 891 |
+
)
|
| 892 |
+
if lang_choice in ["Spanish"]:
|
| 893 |
+
variations = [
|
| 894 |
+
k
|
| 895 |
+
for k, v in lang_set.items()
|
| 896 |
+
if v["category"] in ["Spanish Variations languages"]
|
| 897 |
+
]
|
| 898 |
tabs_var = st.tabs(variations)
|
| 899 |
for var, tab in zip(variations, tabs_var):
|
| 900 |
with tab:
|
| 901 |
+
create_dataset_info_per_language(var)
|
|
|
|
|
|
|
|
|
|
| 902 |
else:
|
| 903 |
create_dataset_info_per_language(lang_choice)
|
| 904 |
st.markdown("### Task mappings 🔄")
|
| 905 |
+
st.markdown(
|
| 906 |
+
"For the sake of completeness, here we show the mappings we use in the leaderboard to aggregate tasks."
|
| 907 |
+
)
|
| 908 |
+
tab1, tab2 = st.tabs(
|
| 909 |
+
["Semantic categories 🗂️", "Fundamental vs. Industry ⚖️"]
|
| 910 |
+
)
|
| 911 |
with tab1:
|
| 912 |
+
st.json(
|
| 913 |
+
{
|
| 914 |
+
category: [task.removeprefix("iberbench/") for task in tasks]
|
| 915 |
+
for category, tasks in semantic_categories.items()
|
| 916 |
+
}
|
| 917 |
+
)
|
| 918 |
with tab2:
|
| 919 |
+
st.json(
|
| 920 |
+
{
|
| 921 |
+
category: [task.removeprefix("iberbench/") for task in tasks]
|
| 922 |
+
for category, tasks in professional_mapping.items()
|
| 923 |
+
}
|
| 924 |
+
)
|
| 925 |
|
| 926 |
elif menu == "About ℹ️":
|
| 927 |
+
st.markdown(
|
| 928 |
+
"<div class='main-header'><h1>About ℹ️</h1></div>",
|
| 929 |
+
unsafe_allow_html=True,
|
| 930 |
+
)
|
| 931 |
+
with open("./assets/md/about.md", "r") as fr:
|
| 932 |
+
st.markdown(fr.read(), unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
etc/languages_settings.yml
CHANGED
|
@@ -10,8 +10,8 @@ Galician:
|
|
| 10 |
category: 'Iberian Peninsula languages'
|
| 11 |
English:
|
| 12 |
category: 'Iberian Peninsula languages'
|
| 13 |
-
Mixed:
|
| 14 |
-
category: '
|
| 15 |
Costa Rica:
|
| 16 |
category: 'Spanish Variations languages'
|
| 17 |
Mexico:
|
|
|
|
| 10 |
category: 'Iberian Peninsula languages'
|
| 11 |
English:
|
| 12 |
category: 'Iberian Peninsula languages'
|
| 13 |
+
Spanish Mixed:
|
| 14 |
+
category: 'Spanish Variations languages'
|
| 15 |
Costa Rica:
|
| 16 |
category: 'Spanish Variations languages'
|
| 17 |
Mexico:
|