File size: 4,525 Bytes
7976155
c16aa6d
 
 
 
 
 
9c64352
c16aa6d
 
 
 
f2c0071
 
 
c16aa6d
 
 
 
 
 
 
 
9c64352
c16aa6d
 
 
 
 
 
 
9c64352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2c0071
 
 
 
 
 
 
 
 
 
c16aa6d
 
9c64352
 
f2c0071
c16aa6d
 
 
c1f713e
9c64352
 
7976155
 
 
9c64352
 
c16aa6d
7976155
a6d7aa8
7976155
 
 
 
a6d7aa8
7976155
c16aa6d
 
 
 
 
 
a6d7aa8
c16aa6d
 
 
 
 
 
 
a6d7aa8
c16aa6d
 
 
 
 
 
 
9c64352
c16aa6d
a6d7aa8
c16aa6d
 
 
 
 
9c64352
c1f713e
c16aa6d
9c64352
c16aa6d
9c64352
 
 
c1f713e
 
c16aa6d
7976155
 
c1f713e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from ast import Attribute
from dotenv import load_dotenv

load_dotenv(override=True)

import re
import os
import pandas as pd
import json
from typing import List, Dict, Any
import pandas as pd
import gradio as gr
import datetime
from pathlib import Path
import json

from risk_atlas_nexus.blocks.inference import WMLInferenceEngine
from risk_atlas_nexus.blocks.inference.params import WMLInferenceEngineParams
from risk_atlas_nexus.library import RiskAtlasNexus

from functools import lru_cache

# Load the taxonomies
ran = RiskAtlasNexus() # type: ignore


@lru_cache
def risk_identifier(usecase: str, 
                    model_name_or_path: str = "ibm/granite-20b-code-instruct", 
                    taxonomy: str = "ibm-risk-atlas"): # -> List[Dict[str, Any]]: #pd.DataFrame:

    inference_engine = WMLInferenceEngine(
        model_name_or_path= model_name_or_path,
        credentials={
            "api_key": os.environ["WML_API_KEY"],
            "api_url": os.environ["WML_API_URL"],
            "project_id": os.environ["WML_PROJECT_ID"],
        },
        parameters=WMLInferenceEngineParams(
            max_new_tokens=150, decoding_method="greedy", repetition_penalty=1
        ),  # type: ignore
    )

    risks = ran.identify_risks_from_usecases( # type: ignore
        usecases=[usecase],
        inference_engine=inference_engine,
        taxonomy=taxonomy,
    )[0]

    sample_labels = [r.name if r else r.id for r in risks]

    out_sec = gr.Markdown("""<h2> Potential Risks </h2> """)

    # write out a JSON
    data = {'time': str(datetime.datetime.now(datetime.timezone.utc)),
                'intent': usecase,
                'model': model_name_or_path,
                'taxonomy': taxonomy,
                'risks': [json.loads(r.json()) for r in risks]
        }
    file_path = Path("static/download.json")
    file_path.write_text(json.dumps(data, indent=4), encoding='utf-8')
        
    #return out_df
    return out_sec, gr.State(risks), gr.Dataset(samples=[r.id for r in risks], 
                                     sample_labels=sample_labels, 
                                     samples_per_page=50, visible=True, label="Estimated by an LLM."), gr.DownloadButton("Download JSON", visible=True, value="static/download.json")
    

@lru_cache
def mitigations(riskid: str, taxonomy: str) -> tuple[gr.Markdown, gr.Dataset, gr.DataFrame, gr.Markdown]:
    """
    For a specific risk (riskid), returns
    (a) a risk description
    (b) related risks - as a dataset
    (c) mitigations

    """
    
    try:
        risk_desc = ran.get_risk(id=riskid).description # type: ignore
        risk_sec = f"<h3>Description: </h3> {risk_desc}"
    except AttributeError:
        risk_sec = ""

    related_risk_ids = [r.id for r in ran.get_related_risks(id=riskid)]

    action_ids = []

    if taxonomy == "ibm-risk-atlas":
        # look for actions associated with related risks    
        if related_risk_ids:
            for i in related_risk_ids:
                rai = ran.get_related_actions(id=i)
                if rai:
                    action_ids += rai
    
        else:
            action_ids = []
    else:
        # Use only actions related to primary risks
        action_ids = ran.get_related_actions(id=riskid)
    
    # Sanitize outputs
    if not related_risk_ids:
        label = "No related risks found."
        samples = None
        sample_labels = None
    else:
        label = f"Risks from other taxonomies related to {riskid}"
        samples = related_risk_ids
        sample_labels = [i.name for i in ran.get_related_risks(id=riskid)] #type: ignore

    if not action_ids:
        alabel = "No mitigations found."
        asamples = None
        asample_labels = None
        mitdf = pd.DataFrame()
        
    else:
        alabel = f"Mitigation actions related to risk {riskid}."
        asamples = action_ids
        asample_labels = [ran.get_action_by_id(i).description for i in asamples] # type: ignore
        asample_name = [ran.get_action_by_id(i).name for i in asamples] #type: ignore
        mitdf = pd.DataFrame({"Mitigation": asample_name, "Description": asample_labels})
        
    status = gr.Markdown(" ") if len(mitdf) > 0 else gr.Markdown("No mitigations found.")

    return (gr.Markdown(risk_sec), 
            gr.Dataset(samples=samples, label=label, sample_labels=sample_labels, visible=True),
            gr.DataFrame(mitdf, wrap=True, show_copy_button=True, show_search="search", label=alabel, visible=True),
            status)