Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
OLM-CLLM OCR β Gradio Space
|
3 |
+
Upload any PDF β get clean, linearised text.
|
4 |
+
|
5 |
+
π Model: allenai/olmOCR-7B-0225-preview
|
6 |
+
π§ Prompts / render helpers come from the `olmocr` toolkit
|
7 |
+
"""
|
8 |
+
|
9 |
+
import json, base64, tempfile, os, gc
|
10 |
+
from io import BytesIO
|
11 |
+
|
12 |
+
import gradio as gr
|
13 |
+
import torch
|
14 |
+
from PIL import Image
|
15 |
+
from pypdf import PdfReader
|
16 |
+
|
17 |
+
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
18 |
+
from olmocr.data.renderpdf import render_pdf_to_base64png # page β base64 PNG
|
19 |
+
from olmocr.prompts.anchor import get_anchor_text # page β anchor text
|
20 |
+
from olmocr.prompts import build_finetuning_prompt # anchor β final prompt
|
21 |
+
|
22 |
+
# ---------- 1. Model & processor (load once, then stay in memory) ----------
|
23 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
24 |
+
|
25 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
26 |
+
"allenai/olmOCR-7B-0225-preview",
|
27 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
|
28 |
+
).to(device).eval()
|
29 |
+
|
30 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct")
|
31 |
+
|
32 |
+
# ---------- 2. Utility ------------------------------------------------------
|
33 |
+
def _decode_llm_json(raw_str: str) -> str:
|
34 |
+
"""
|
35 |
+
olmOCR returns a JSON string like:
|
36 |
+
{
|
37 |
+
"primary_language": "...",
|
38 |
+
...
|
39 |
+
"natural_text": "THE ACTUAL PAGE TEXT"
|
40 |
+
}
|
41 |
+
Pull out the `natural_text` field; fall back to raw string if parsing fails.
|
42 |
+
"""
|
43 |
+
try:
|
44 |
+
page_json = json.loads(raw_str.strip())
|
45 |
+
return page_json.get("natural_text") or ""
|
46 |
+
except Exception:
|
47 |
+
return raw_str.strip()
|
48 |
+
|
49 |
+
# ---------- 3. Core pipeline ------------------------------------------------
|
50 |
+
def pdf_to_text(pdf_file):
|
51 |
+
"""
|
52 |
+
β’ Save uploaded file to a temp path (toolkit needs a real path)
|
53 |
+
β’ Iterate over pages
|
54 |
+
β’ For each page:
|
55 |
+
β render page image β base64
|
56 |
+
β generate anchor text in-page
|
57 |
+
β build prompt (+ image) and run the model
|
58 |
+
β collect `natural_text`
|
59 |
+
β’ Return merged text
|
60 |
+
"""
|
61 |
+
|
62 |
+
if pdf_file is None:
|
63 |
+
return "β¬οΈ Please upload a PDF first."
|
64 |
+
|
65 |
+
with tempfile.TemporaryDirectory() as tmpdir:
|
66 |
+
local_pdf_path = os.path.join(tmpdir, "input.pdf")
|
67 |
+
with open(local_pdf_path, "wb") as f:
|
68 |
+
f.write(pdf_file.read())
|
69 |
+
|
70 |
+
reader = PdfReader(local_pdf_path)
|
71 |
+
n_pages = len(reader.pages)
|
72 |
+
|
73 |
+
extracted_pages = []
|
74 |
+
|
75 |
+
for page_idx in range(1, n_pages + 1): # 1-indexed
|
76 |
+
# a. Image
|
77 |
+
img_b64 = render_pdf_to_base64png(
|
78 |
+
local_pdf_path, page_idx, target_longest_image_dim=1024
|
79 |
+
)
|
80 |
+
page_image = Image.open(BytesIO(base64.b64decode(img_b64)))
|
81 |
+
|
82 |
+
# b. Anchor text & prompt
|
83 |
+
anchor = get_anchor_text(
|
84 |
+
local_pdf_path,
|
85 |
+
page_idx,
|
86 |
+
pdf_engine="pdfreport", # uses pypdf / pdfium, no Poppler dependency
|
87 |
+
target_length=4000,
|
88 |
+
)
|
89 |
+
prompt = build_finetuning_prompt(anchor)
|
90 |
+
|
91 |
+
messages = [
|
92 |
+
{
|
93 |
+
"role": "user",
|
94 |
+
"content": [
|
95 |
+
{"type": "text", "text": prompt},
|
96 |
+
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{img_b64}"}},
|
97 |
+
],
|
98 |
+
}
|
99 |
+
]
|
100 |
+
|
101 |
+
# c. Tokenise + generate
|
102 |
+
text_in = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
103 |
+
inputs = processor(text=[text_in], images=[page_image], return_tensors="pt", padding=True)
|
104 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
105 |
+
|
106 |
+
with torch.no_grad():
|
107 |
+
gen = model.generate(
|
108 |
+
**inputs,
|
109 |
+
temperature=0.2,
|
110 |
+
max_new_tokens=512,
|
111 |
+
do_sample=False,
|
112 |
+
)
|
113 |
+
|
114 |
+
prompt_len = inputs["input_ids"].shape[1]
|
115 |
+
new_tokens = gen[:, prompt_len:]
|
116 |
+
raw_out = processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True)[0]
|
117 |
+
|
118 |
+
extracted_pages.append(_decode_llm_json(raw_out))
|
119 |
+
|
120 |
+
# optional memory clean-up per page
|
121 |
+
del inputs, gen
|
122 |
+
gc.collect()
|
123 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
124 |
+
|
125 |
+
return "\n\n".join(extracted_pages) or "π€ Nothing returned."
|
126 |
+
|
127 |
+
# ---------- 4. Gradio UI ----------------------------------------------------
|
128 |
+
with gr.Blocks(title="olmOCR 7B PDF Extractor") as demo:
|
129 |
+
gr.Markdown(
|
130 |
+
"""
|
131 |
+
# π§ **OLM-CLLM OCR**
|
132 |
+
Upload a PDF → get high-quality, linearised text (tables β Markdown, equations β LaTeX).
|
133 |
+
Fine-tuned Vision-LLM: **allenai/olmOCR-7B-0225-preview**.
|
134 |
+
"""
|
135 |
+
)
|
136 |
+
|
137 |
+
with gr.Row():
|
138 |
+
with gr.Column(scale=1):
|
139 |
+
up = gr.File(label="π Upload PDF", file_types=[".pdf"])
|
140 |
+
go = gr.Button("Extract Text", variant="primary", size="lg")
|
141 |
+
with gr.Column(scale=2):
|
142 |
+
out = gr.Textbox(
|
143 |
+
label="π Extracted text",
|
144 |
+
lines=25,
|
145 |
+
interactive=False,
|
146 |
+
show_copy_button=True,
|
147 |
+
)
|
148 |
+
|
149 |
+
go.click(pdf_to_text, inputs=up, outputs=out)
|
150 |
+
|
151 |
+
# ---------- 5. Launch locally (Space will ignore this) ----------------------
|
152 |
+
if __name__ == "__main__":
|
153 |
+
demo.launch()
|