File size: 2,105 Bytes
75db504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import torch
from torch import nn
import timm
from transformers import DistilBertModel, DistilBertConfig
import config as CFG


class ImageEncoder(nn.Module):
    """
    Encode images to a fixed size vector
    """

    def __init__(
        self, model_name=CFG.model_name, pretrained=CFG.pretrained, trainable=CFG.trainable
    ):
        super().__init__()
        self.model = timm.create_model(
            model_name, pretrained, num_classes=0, global_pool="avg"
        )
        for p in self.model.parameters():
            p.requires_grad = trainable

    def forward(self, x):
        return self.model(x)


class TextEncoder(nn.Module):
    def __init__(self, model_name=CFG.text_encoder_model, pretrained=CFG.pretrained, trainable=CFG.trainable):
        super().__init__()
        if pretrained:
            self.model = DistilBertModel.from_pretrained(model_name)
        else:
            self.model = DistilBertModel(config=DistilBertConfig())
            
        for p in self.model.parameters():
            p.requires_grad = trainable

        # we are using the CLS token hidden representation as the sentence's embedding
        self.target_token_idx = 0

    def forward(self, input_ids, attention_mask):
        output = self.model(input_ids=input_ids, attention_mask=attention_mask)
        last_hidden_state = output.last_hidden_state
        return last_hidden_state[:, self.target_token_idx, :]



class ProjectionHead(nn.Module):
    def __init__(
        self,
        embedding_dim,
        projection_dim=CFG.projection_dim,
        dropout=CFG.dropout
    ):
        super().__init__()
        self.projection = nn.Linear(embedding_dim, projection_dim)
        self.gelu = nn.GELU()
        self.fc = nn.Linear(projection_dim, projection_dim)
        self.dropout = nn.Dropout(dropout)
        self.layer_norm = nn.LayerNorm(projection_dim)
    
    def forward(self, x):
        projected = self.projection(x)
        x = self.gelu(projected)
        x = self.fc(x)
        x = self.dropout(x)
        x = x + projected
        x = self.layer_norm(x)
        return x