<!DOCTYPE html>
<html lang="en">

<head>
    <meta charset="UTF-8">
    <title>Zero Shot Image Classification - Hugging Face Transformers.js</title>

    <script type="module">
        // Import the library
        import { pipeline } from 'https://cdn.jsdelivr.net/npm/@xenova/transformers@2.5.4';

        // Make it available globally
        window.pipeline = pipeline;
    </script>

    <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.1.0/dist/css/bootstrap.min.css" rel="stylesheet">

    <link rel="stylesheet" href="css/styles.css">
</head>

<body>
    <div class="container-main">
        <!-- Page Header -->
        <div class="header">
            <div class="header-logo">
                <img src="images/logo.png" alt="logo">
            </div>
            <div class="header-main-text">
                <h1>Hugging Face Transformers.js</h1>
            </div>
            <div class="header-sub-text">
                <h3>Free AI Models for JavaScript Web Development</h3>
            </div>
        </div>
        <hr> <!-- Separator -->

        <!-- Back to Home button -->
        <div class="row mt-5">
            <div class="col-md-12 text-center">
                <a href="index.html" class="btn btn-outline-secondary"
                    style="color: #3c650b; border-color: #3c650b;">Back to Main Page</a>
            </div>
        </div>

        <!-- Content -->
        <div class="container mt-5">
            <!-- Centered Titles -->
            <div class="text-center">
                <h2>Computer Vision</h2>
                <h4>Zero Shot Image Classification</h4>
            </div>

            <!-- Actual Content of this page -->
            <div id="zero-shot-image-classification-container" class="container mt-4">
                <h5>Zero Shot Image Classification w/ Xenova/clip-vit-base-patch32:</h5>
                <div class="d-flex align-items-center mb-2">
                    <label for="zeroShotImageClassificationURLText" class="mb-0 text-nowrap"
                        style="margin-right: 15px;">Enter
                        image URL:</label>
                    <input type="text" class="form-control flex-grow-1" id="zeroShotImageClassificationURLText"
                        value="https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg"
                        placeholder="Enter image" style="margin-right: 15px; margin-left: 15px;">
                </div>
                <div class="d-flex align-items-center">
                    <label for="labelsText" class="mb-0 text-nowrap" style="margin-right: 15px;">Enter Labels (comma
                        separated):</label>
                    <input type="text" class="form-control flex-grow-1" id="labelsText" value="tiger, horse, dog"
                        placeholder="Enter labels (comma separated)" style="margin-right: 15px; margin-left: 15px;">
                    <button id="classifyButton" class="btn btn-primary ml-2" onclick="classifyImage()">Classify</button>
                </div>
                <div class="mt-4">
                    <h4>Output:</h4>
                    <pre id="outputArea"></pre>
                </div>
            </div>

            <hr> <!-- Line Separator -->

            <div id="zero-shot-image-classification-local-container" class="container mt-4">
                <h5>Zero Shot Image Classification Local File:</h5>
                <div class="d-flex align-items-center mb-2">
                    <label for="imageClassificationLocalFile" class="mb-0 text-nowrap"
                        style="margin-right: 15px;">Select Local Image:</label>
                    <input type="file" id="imageClassificationLocalFile" accept="image/*" />
                </div>
                <div class="d-flex align-items-center">
                    <label for="labelsLocalText" class="mb-0 text-nowrap" style="margin-right: 15px;">Enter Labels (comma
                        separated):</label>
                    <input type="text" class="form-control flex-grow-1" id="labelsLocalText" value="tiger, horse, dog"
                        placeholder="Enter labels (comma separated)" style="margin-right: 15px; margin-left: 15px;">
                    <button id="classifyLocalButton" class="btn btn-primary ml-2" onclick="classifyLocalImage()">Classify</button>
                </div>
                <div class="mt-4">
                    <h4>Output:</h4>
                    <pre id="outputAreaLocal"></pre>
                </div>
            </div>

        </div>

        <!-- Back to Home button -->
        <div class="row mt-5">
            <div class="col-md-12 text-center">
                <a href="index.html" class="btn btn-outline-secondary"
                    style="color: #3c650b; border-color: #3c650b;">Back to Main Page</a>
            </div>
        </div>
    </div>
    </div>

    <script>

        let classifier;

        // Initialize the sentiment analysis model
        async function initializeModel() {
            classifier = await pipeline('zero-shot-image-classification', 'Xenova/clip-vit-base-patch32');

        }

        async function classifyImage() {
            const textFieldValue = document.getElementById("zeroShotImageClassificationURLText").value.trim();
            const labels = document.getElementById("labelsText").value.trim().split(",").map(item => item.trim());

            const result = await classifier(textFieldValue, labels);

            document.getElementById("outputArea").innerText = JSON.stringify(result, null, 2);
        }

        async function classifyLocalImage() {
            const fileInput = document.getElementById("imageClassificationLocalFile");
            const file = fileInput.files[0];

            if (!file) {
                alert('Please select an image file first.');
                return;
            }

            // Create a Blob URL from the file
            const url = URL.createObjectURL(file);
            const labels = document.getElementById("labelsLocalText").value.trim().split(",").map(item => item.trim());

            const result = await classifier(url, labels);

            document.getElementById("outputAreaLocal").innerText = JSON.stringify(result, null, 2);
        }

        // Initialize the model after the DOM is completely loaded
        window.addEventListener("DOMContentLoaded", initializeModel);
    </script>
</body>

</html>