Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
65b6110
1
Parent(s):
c7ea8b7
- README.md +1 -1
- app_gradio.py +571 -0
- index.html +189 -207
README.md
CHANGED
|
@@ -5,7 +5,7 @@ colorFrom: blue
|
|
| 5 |
colorTo: indigo
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.49.1
|
| 8 |
-
app_file:
|
| 9 |
pinned: false
|
| 10 |
license: cc-by-nc-sa-4.0
|
| 11 |
models:
|
|
|
|
| 5 |
colorTo: indigo
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.49.1
|
| 8 |
+
app_file: app_gradio.py
|
| 9 |
pinned: false
|
| 10 |
license: cc-by-nc-sa-4.0
|
| 11 |
models:
|
app_gradio.py
ADDED
|
@@ -0,0 +1,571 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
try:
|
| 2 |
+
import spaces
|
| 3 |
+
GPU = spaces.GPU
|
| 4 |
+
print("spaces GPU is available")
|
| 5 |
+
except ImportError:
|
| 6 |
+
def GPU(func):
|
| 7 |
+
return func
|
| 8 |
+
|
| 9 |
+
import os
|
| 10 |
+
import subprocess
|
| 11 |
+
|
| 12 |
+
# def install_cuda_toolkit():
|
| 13 |
+
# # CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
|
| 14 |
+
# CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_550.54.14_linux.run"
|
| 15 |
+
# CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
|
| 16 |
+
# subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
|
| 17 |
+
# subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
|
| 18 |
+
# subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
|
| 19 |
+
|
| 20 |
+
# os.environ["CUDA_HOME"] = "/usr/local/cuda"
|
| 21 |
+
# os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
|
| 22 |
+
# os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
|
| 23 |
+
# os.environ["CUDA_HOME"],
|
| 24 |
+
# "" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
|
| 25 |
+
# )
|
| 26 |
+
# # Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
|
| 27 |
+
# os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
|
| 28 |
+
|
| 29 |
+
# print("Successfully installed CUDA toolkit at: ", os.environ["CUDA_HOME"])
|
| 30 |
+
|
| 31 |
+
# subprocess.call('rm /usr/bin/gcc', shell=True)
|
| 32 |
+
# subprocess.call('rm /usr/bin/g++', shell=True)
|
| 33 |
+
# subprocess.call('rm /usr/local/cuda/bin/gcc', shell=True)
|
| 34 |
+
# subprocess.call('rm /usr/local/cuda/bin/g++', shell=True)
|
| 35 |
+
|
| 36 |
+
# subprocess.call('ln -s /usr/bin/gcc-11 /usr/bin/gcc', shell=True)
|
| 37 |
+
# subprocess.call('ln -s /usr/bin/g++-11 /usr/bin/g++', shell=True)
|
| 38 |
+
|
| 39 |
+
# subprocess.call('ln -s /usr/bin/gcc-11 /usr/local/cuda/bin/gcc', shell=True)
|
| 40 |
+
# subprocess.call('ln -s /usr/bin/g++-11 /usr/local/cuda/bin/g++', shell=True)
|
| 41 |
+
|
| 42 |
+
# subprocess.call('gcc --version', shell=True)
|
| 43 |
+
# subprocess.call('g++ --version', shell=True)
|
| 44 |
+
|
| 45 |
+
# install_cuda_toolkit()
|
| 46 |
+
|
| 47 |
+
# subprocess.run('pip install git+https://github.com/nerfstudio-project/gsplat.git@32f2a54d21c7ecb135320bb02b136b7407ae5712 --no-build-isolation --use-pep517', env={'CUDA_HOME': "/usr/local/cuda", "TORCH_CUDA_ARCH_LIST": "8.0;8.6"}, shell=True)
|
| 48 |
+
|
| 49 |
+
import gradio as gr
|
| 50 |
+
import base64
|
| 51 |
+
import io
|
| 52 |
+
from PIL import Image
|
| 53 |
+
import torch
|
| 54 |
+
import numpy as np
|
| 55 |
+
import os
|
| 56 |
+
import argparse
|
| 57 |
+
import imageio
|
| 58 |
+
import json
|
| 59 |
+
import time
|
| 60 |
+
import tempfile
|
| 61 |
+
import shutil
|
| 62 |
+
|
| 63 |
+
from huggingface_hub import hf_hub_download
|
| 64 |
+
|
| 65 |
+
import einops
|
| 66 |
+
import torch
|
| 67 |
+
import torch.nn as nn
|
| 68 |
+
import torch.nn.functional as F
|
| 69 |
+
import numpy as np
|
| 70 |
+
|
| 71 |
+
import imageio
|
| 72 |
+
|
| 73 |
+
from models import *
|
| 74 |
+
from utils import *
|
| 75 |
+
|
| 76 |
+
from transformers import T5TokenizerFast, UMT5EncoderModel
|
| 77 |
+
|
| 78 |
+
from diffusers import FlowMatchEulerDiscreteScheduler
|
| 79 |
+
|
| 80 |
+
class MyFlowMatchEulerDiscreteScheduler(FlowMatchEulerDiscreteScheduler):
|
| 81 |
+
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
| 82 |
+
if schedule_timesteps is None:
|
| 83 |
+
schedule_timesteps = self.timesteps
|
| 84 |
+
|
| 85 |
+
return torch.argmin(
|
| 86 |
+
(timestep - schedule_timesteps.to(timestep.device)).abs(), dim=0).item()
|
| 87 |
+
|
| 88 |
+
class GenerationSystem(nn.Module):
|
| 89 |
+
def __init__(self, ckpt_path=None, device="cuda:0", offload_t5=False, offload_vae=False):
|
| 90 |
+
super().__init__()
|
| 91 |
+
self.device = device
|
| 92 |
+
self.offload_t5 = offload_t5
|
| 93 |
+
self.offload_vae = offload_vae
|
| 94 |
+
|
| 95 |
+
self.latent_dim = 48
|
| 96 |
+
self.temporal_downsample_factor = 4
|
| 97 |
+
self.spatial_downsample_factor = 16
|
| 98 |
+
|
| 99 |
+
self.feat_dim = 1024
|
| 100 |
+
|
| 101 |
+
self.latent_patch_size = 2
|
| 102 |
+
|
| 103 |
+
self.denoising_steps = [0, 250, 500, 750]
|
| 104 |
+
|
| 105 |
+
model_id = "Wan-AI/Wan2.2-TI2V-5B-Diffusers"
|
| 106 |
+
|
| 107 |
+
self.vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float).eval()
|
| 108 |
+
|
| 109 |
+
from models.autoencoder_kl_wan import WanCausalConv3d
|
| 110 |
+
with torch.no_grad():
|
| 111 |
+
for name, module in self.vae.named_modules():
|
| 112 |
+
if isinstance(module, WanCausalConv3d):
|
| 113 |
+
time_pad = module._padding[4]
|
| 114 |
+
module.padding = (0, module._padding[2], module._padding[0])
|
| 115 |
+
module._padding = (0, 0, 0, 0, 0, 0)
|
| 116 |
+
module.weight = torch.nn.Parameter(module.weight[:, :, time_pad:].clone())
|
| 117 |
+
|
| 118 |
+
self.vae.requires_grad_(False)
|
| 119 |
+
|
| 120 |
+
self.register_buffer('latents_mean', torch.tensor(self.vae.config.latents_mean).float().view(1, self.vae.config.z_dim, 1, 1, 1).to(self.device))
|
| 121 |
+
self.register_buffer('latents_std', torch.tensor(self.vae.config.latents_std).float().view(1, self.vae.config.z_dim, 1, 1, 1).to(self.device))
|
| 122 |
+
|
| 123 |
+
self.latent_scale_fn = lambda x: (x - self.latents_mean) / self.latents_std
|
| 124 |
+
self.latent_unscale_fn = lambda x: x * self.latents_std + self.latents_mean
|
| 125 |
+
|
| 126 |
+
self.tokenizer = T5TokenizerFast.from_pretrained(model_id, subfolder="tokenizer")
|
| 127 |
+
|
| 128 |
+
self.text_encoder = UMT5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.float32).eval().requires_grad_(False).to(self.device if not self.offload_t5 else "cpu")
|
| 129 |
+
|
| 130 |
+
self.transformer = WanTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float32).train().requires_grad_(False)
|
| 131 |
+
|
| 132 |
+
self.transformer.patch_embedding.weight = nn.Parameter(F.pad(self.transformer.patch_embedding.weight, (0, 0, 0, 0, 0, 0, 0, 6 + self.latent_dim)))
|
| 133 |
+
# self.transformer.rope.freqs_f[:] = self.transformer.rope.freqs_f[:1]
|
| 134 |
+
|
| 135 |
+
weight = self.transformer.proj_out.weight.reshape(self.latent_patch_size ** 2, self.latent_dim, self.transformer.proj_out.weight.shape[1])
|
| 136 |
+
bias = self.transformer.proj_out.bias.reshape(self.latent_patch_size ** 2, self.latent_dim)
|
| 137 |
+
|
| 138 |
+
extra_weight = torch.randn(self.latent_patch_size ** 2, self.feat_dim, self.transformer.proj_out.weight.shape[1]) * 0.02
|
| 139 |
+
extra_bias = torch.zeros(self.latent_patch_size ** 2, self.feat_dim)
|
| 140 |
+
|
| 141 |
+
self.transformer.proj_out.weight = nn.Parameter(torch.cat([weight, extra_weight], dim=1).flatten(0, 1).detach().clone())
|
| 142 |
+
self.transformer.proj_out.bias = nn.Parameter(torch.cat([bias, extra_bias], dim=1).flatten(0, 1).detach().clone())
|
| 143 |
+
|
| 144 |
+
self.recon_decoder = WANDecoderPixelAligned3DGSReconstructionModel(self.vae, self.feat_dim, use_render_checkpointing=True, use_network_checkpointing=False).train().requires_grad_(False).to(self.device)
|
| 145 |
+
|
| 146 |
+
self.scheduler = MyFlowMatchEulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler", shift=3)
|
| 147 |
+
|
| 148 |
+
self.register_buffer('timesteps', self.scheduler.timesteps.clone().to(self.device))
|
| 149 |
+
|
| 150 |
+
self.transformer.disable_gradient_checkpointing()
|
| 151 |
+
self.transformer.gradient_checkpointing = False
|
| 152 |
+
|
| 153 |
+
self.add_feedback_for_transformer()
|
| 154 |
+
|
| 155 |
+
if ckpt_path is not None:
|
| 156 |
+
state_dict = torch.load(ckpt_path, map_location="cpu", weights_only=False)
|
| 157 |
+
self.transformer.load_state_dict(state_dict["transformer"])
|
| 158 |
+
self.recon_decoder.load_state_dict(state_dict["recon_decoder"])
|
| 159 |
+
print(f"Loaded {ckpt_path}.")
|
| 160 |
+
|
| 161 |
+
from quant import FluxFp8GeMMProcessor
|
| 162 |
+
|
| 163 |
+
FluxFp8GeMMProcessor(self.transformer)
|
| 164 |
+
|
| 165 |
+
del self.vae.post_quant_conv, self.vae.decoder
|
| 166 |
+
self.vae.to(self.device if not self.offload_vae else "cpu")
|
| 167 |
+
|
| 168 |
+
self.transformer.to(self.device)
|
| 169 |
+
|
| 170 |
+
def add_feedback_for_transformer(self):
|
| 171 |
+
self.use_feedback = True
|
| 172 |
+
self.transformer.patch_embedding.weight = nn.Parameter(F.pad(self.transformer.patch_embedding.weight, (0, 0, 0, 0, 0, 0, 0, self.feat_dim + self.latent_dim)))
|
| 173 |
+
|
| 174 |
+
def encode_text(self, texts):
|
| 175 |
+
max_sequence_length = 512
|
| 176 |
+
|
| 177 |
+
text_inputs = self.tokenizer(
|
| 178 |
+
texts,
|
| 179 |
+
padding="max_length",
|
| 180 |
+
max_length=max_sequence_length,
|
| 181 |
+
truncation=True,
|
| 182 |
+
add_special_tokens=True,
|
| 183 |
+
return_attention_mask=True,
|
| 184 |
+
return_tensors="pt",
|
| 185 |
+
)
|
| 186 |
+
if getattr(self, "offload_t5", False):
|
| 187 |
+
text_input_ids = text_inputs.input_ids.to("cpu")
|
| 188 |
+
mask = text_inputs.attention_mask.to("cpu")
|
| 189 |
+
else:
|
| 190 |
+
text_input_ids = text_inputs.input_ids.to(self.device)
|
| 191 |
+
mask = text_inputs.attention_mask.to(self.device)
|
| 192 |
+
seq_lens = mask.gt(0).sum(dim=1).long()
|
| 193 |
+
|
| 194 |
+
if getattr(self, "offload_t5", False):
|
| 195 |
+
with torch.no_grad():
|
| 196 |
+
text_embeds = self.text_encoder(text_input_ids, mask).last_hidden_state.to(self.device)
|
| 197 |
+
else:
|
| 198 |
+
text_embeds = self.text_encoder(text_input_ids, mask).last_hidden_state
|
| 199 |
+
text_embeds = [u[:v] for u, v in zip(text_embeds, seq_lens)]
|
| 200 |
+
text_embeds = torch.stack(
|
| 201 |
+
[torch.cat([u, u.new_zeros(max_sequence_length - u.size(0), u.size(1))]) for u in text_embeds], dim=0
|
| 202 |
+
)
|
| 203 |
+
return text_embeds.float()
|
| 204 |
+
|
| 205 |
+
def forward_generator(self, noisy_latents, raymaps, condition_latents, t, text_embeds, cameras, render_cameras, image_height, image_width, need_3d_mode=True):
|
| 206 |
+
|
| 207 |
+
out = self.transformer(
|
| 208 |
+
hidden_states=torch.cat([noisy_latents, raymaps, condition_latents], dim=1),
|
| 209 |
+
timestep=t,
|
| 210 |
+
encoder_hidden_states=text_embeds,
|
| 211 |
+
return_dict=False,
|
| 212 |
+
)[0]
|
| 213 |
+
|
| 214 |
+
v_pred, feats = out.split([self.latent_dim, self.feat_dim], dim=1)
|
| 215 |
+
|
| 216 |
+
sigma = torch.stack([self.scheduler.sigmas[self.scheduler.index_for_timestep(_t)] for _t in t.unbind(0)], dim=0).to(self.device)
|
| 217 |
+
latents_pred_2d = noisy_latents - sigma * v_pred
|
| 218 |
+
|
| 219 |
+
if need_3d_mode:
|
| 220 |
+
scene_params = self.recon_decoder(
|
| 221 |
+
einops.rearrange(feats, 'B C T H W -> (B T) C H W').unsqueeze(2),
|
| 222 |
+
einops.rearrange(self.latent_unscale_fn(latents_pred_2d.detach()), 'B C T H W -> (B T) C H W').unsqueeze(2),
|
| 223 |
+
cameras
|
| 224 |
+
).flatten(1, -2)
|
| 225 |
+
|
| 226 |
+
images_pred, _ = self.recon_decoder.render(scene_params.unbind(0), render_cameras, image_height, image_width, bg_mode="white")
|
| 227 |
+
|
| 228 |
+
latents_pred_3d = einops.rearrange(self.latent_scale_fn(self.vae.encode(
|
| 229 |
+
einops.rearrange(images_pred, 'B T C H W -> (B T) C H W', T=images_pred.shape[1]).unsqueeze(2).to(self.device if not self.offload_vae else "cpu").float()
|
| 230 |
+
).latent_dist.sample().to(self.device)).squeeze(2), '(B T) C H W -> B C T H W', T=images_pred.shape[1]).to(noisy_latents.dtype)
|
| 231 |
+
|
| 232 |
+
return {
|
| 233 |
+
'2d': latents_pred_2d,
|
| 234 |
+
'3d': latents_pred_3d if need_3d_mode else None,
|
| 235 |
+
'rgb_3d': images_pred if need_3d_mode else None,
|
| 236 |
+
'scene': scene_params if need_3d_mode else None,
|
| 237 |
+
'feat': feats
|
| 238 |
+
}
|
| 239 |
+
|
| 240 |
+
@torch.no_grad()
|
| 241 |
+
@torch.amp.autocast(dtype=torch.bfloat16, device_type="cuda")
|
| 242 |
+
def generate(self, cameras, n_frame, image=None, text="", image_index=0, image_height=480, image_width=704, video_output_path=None):
|
| 243 |
+
with torch.no_grad():
|
| 244 |
+
batch_size = 1
|
| 245 |
+
|
| 246 |
+
cameras = cameras.to(self.device).unsqueeze(0)
|
| 247 |
+
|
| 248 |
+
if cameras.shape[1] != n_frame:
|
| 249 |
+
render_cameras = cameras.clone()
|
| 250 |
+
cameras = sample_from_dense_cameras(cameras.squeeze(0), torch.linspace(0, 1, n_frame, device=self.device)).unsqueeze(0)
|
| 251 |
+
else:
|
| 252 |
+
render_cameras = cameras
|
| 253 |
+
|
| 254 |
+
cameras, ref_w2c, T_norm = normalize_cameras(cameras, return_meta=True, n_frame=None)
|
| 255 |
+
|
| 256 |
+
render_cameras = normalize_cameras(render_cameras, ref_w2c=ref_w2c, T_norm=T_norm, n_frame=None)
|
| 257 |
+
|
| 258 |
+
text = "[Static] " + text
|
| 259 |
+
|
| 260 |
+
text_embeds = self.encode_text([text])
|
| 261 |
+
# neg_text_embeds = self.encode_text([""]).repeat(batch_size, 1, 1)
|
| 262 |
+
|
| 263 |
+
masks = torch.zeros(batch_size, n_frame, device=self.device)
|
| 264 |
+
|
| 265 |
+
condition_latents = torch.zeros(batch_size, self.latent_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device)
|
| 266 |
+
|
| 267 |
+
if image is not None:
|
| 268 |
+
image = image.to(self.device)
|
| 269 |
+
|
| 270 |
+
latent = self.latent_scale_fn(self.vae.encode(
|
| 271 |
+
image.unsqueeze(0).unsqueeze(2).to(self.device if not self.offload_vae else "cpu").float()
|
| 272 |
+
).latent_dist.sample().to(self.device)).squeeze(2)
|
| 273 |
+
|
| 274 |
+
masks[:, image_index] = 1
|
| 275 |
+
condition_latents[:, :, image_index] = latent
|
| 276 |
+
|
| 277 |
+
raymaps = create_raymaps(cameras, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor)
|
| 278 |
+
raymaps = einops.rearrange(raymaps, 'B T H W C -> B C T H W', T=n_frame)
|
| 279 |
+
|
| 280 |
+
noise = torch.randn(batch_size, self.latent_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device)
|
| 281 |
+
|
| 282 |
+
noisy_latents = noise
|
| 283 |
+
|
| 284 |
+
torch.cuda.empty_cache()
|
| 285 |
+
|
| 286 |
+
if self.use_feedback:
|
| 287 |
+
prev_latents_pred = torch.zeros(batch_size, self.latent_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device)
|
| 288 |
+
|
| 289 |
+
prev_feats = torch.zeros(batch_size, self.feat_dim, n_frame, image_height // self.spatial_downsample_factor, image_width // self.spatial_downsample_factor, device=self.device)
|
| 290 |
+
|
| 291 |
+
for i in range(len(self.denoising_steps)):
|
| 292 |
+
t_ids = torch.full((noisy_latents.shape[0],), self.denoising_steps[i], device=self.device)
|
| 293 |
+
|
| 294 |
+
t = self.timesteps[t_ids]
|
| 295 |
+
|
| 296 |
+
if self.use_feedback:
|
| 297 |
+
_condition_latents = torch.cat([condition_latents, prev_feats, prev_latents_pred], dim=1)
|
| 298 |
+
else:
|
| 299 |
+
_condition_latents = condition_latents
|
| 300 |
+
|
| 301 |
+
if i < len(self.denoising_steps) - 1:
|
| 302 |
+
out = self.forward_generator(noisy_latents, raymaps, _condition_latents, t, text_embeds, cameras, cameras, image_height, image_width, need_3d_mode=True)
|
| 303 |
+
|
| 304 |
+
latents_pred = out["3d"]
|
| 305 |
+
|
| 306 |
+
if self.use_feedback:
|
| 307 |
+
prev_latents_pred = latents_pred
|
| 308 |
+
prev_feats = out['feat']
|
| 309 |
+
|
| 310 |
+
noisy_latents = self.scheduler.scale_noise(latents_pred, self.timesteps[torch.full((noisy_latents.shape[0],), self.denoising_steps[i + 1], device=self.device)], torch.randn_like(noise))
|
| 311 |
+
|
| 312 |
+
else:
|
| 313 |
+
out = self.transformer(
|
| 314 |
+
hidden_states=torch.cat([noisy_latents, raymaps, _condition_latents], dim=1),
|
| 315 |
+
timestep=t,
|
| 316 |
+
encoder_hidden_states=text_embeds,
|
| 317 |
+
return_dict=False,
|
| 318 |
+
)[0]
|
| 319 |
+
|
| 320 |
+
v_pred, feats = out.split([self.latent_dim, self.feat_dim], dim=1)
|
| 321 |
+
|
| 322 |
+
sigma = torch.stack([self.scheduler.sigmas[self.scheduler.index_for_timestep(_t)] for _t in t.unbind(0)], dim=0).to(self.device)
|
| 323 |
+
latents_pred = noisy_latents - sigma * v_pred
|
| 324 |
+
|
| 325 |
+
scene_params = self.recon_decoder(
|
| 326 |
+
einops.rearrange(feats, 'B C T H W -> (B T) C H W').unsqueeze(2),
|
| 327 |
+
einops.rearrange(self.latent_unscale_fn(latents_pred.detach()), 'B C T H W -> (B T) C H W').unsqueeze(2),
|
| 328 |
+
cameras
|
| 329 |
+
).flatten(1, -2)
|
| 330 |
+
|
| 331 |
+
if video_output_path is not None:
|
| 332 |
+
interpolated_images_pred, _ = self.recon_decoder.render(scene_params.unbind(0), render_cameras, image_height, image_width, bg_mode="white")
|
| 333 |
+
|
| 334 |
+
interpolated_images_pred = einops.rearrange(interpolated_images_pred[0].clamp(-1, 1).add(1).div(2), 'T C H W -> T H W C')
|
| 335 |
+
|
| 336 |
+
interpolated_images_pred = [torch.cat([img], dim=1).detach().cpu().mul(255).numpy().astype(np.uint8) for i, img in enumerate(interpolated_images_pred.unbind(0))]
|
| 337 |
+
|
| 338 |
+
imageio.mimwrite(video_output_path, interpolated_images_pred, fps=15, quality=8, macro_block_size=1)
|
| 339 |
+
|
| 340 |
+
scene_params = scene_params[0]
|
| 341 |
+
|
| 342 |
+
scene_params = scene_params.detach().cpu()
|
| 343 |
+
|
| 344 |
+
return scene_params, ref_w2c, T_norm
|
| 345 |
+
|
| 346 |
+
def process_generation_request(data, generation_system, cache_dir):
|
| 347 |
+
"""
|
| 348 |
+
Process the generation request with the same logic as Flask version
|
| 349 |
+
"""
|
| 350 |
+
try:
|
| 351 |
+
image_prompt = data.get('image_prompt', None)
|
| 352 |
+
text_prompt = data.get('text_prompt', "")
|
| 353 |
+
cameras = data.get('cameras')
|
| 354 |
+
resolution = data.get('resolution')
|
| 355 |
+
image_index = data.get('image_index', 0)
|
| 356 |
+
|
| 357 |
+
n_frame, image_height, image_width = resolution
|
| 358 |
+
|
| 359 |
+
if not image_prompt and text_prompt == "":
|
| 360 |
+
return {'error': 'No Prompts provided'}
|
| 361 |
+
|
| 362 |
+
if image_prompt:
|
| 363 |
+
# image_prompt可以是路径和base64
|
| 364 |
+
if os.path.exists(image_prompt):
|
| 365 |
+
image_prompt = Image.open(image_prompt)
|
| 366 |
+
else:
|
| 367 |
+
# image_prompt 可能是 "data:image/png;base64,...."
|
| 368 |
+
if ',' in image_prompt:
|
| 369 |
+
image_prompt = image_prompt.split(',', 1)[1]
|
| 370 |
+
|
| 371 |
+
try:
|
| 372 |
+
image_bytes = base64.b64decode(image_prompt)
|
| 373 |
+
image_prompt = Image.open(io.BytesIO(image_bytes))
|
| 374 |
+
except Exception as img_e:
|
| 375 |
+
return {'error': f'Image decode error: {str(img_e)}'}
|
| 376 |
+
|
| 377 |
+
image = image_prompt.convert('RGB')
|
| 378 |
+
|
| 379 |
+
w, h = image.size
|
| 380 |
+
|
| 381 |
+
# center crop
|
| 382 |
+
if image_height / h > image_width / w:
|
| 383 |
+
scale = image_height / h
|
| 384 |
+
else:
|
| 385 |
+
scale = image_width / w
|
| 386 |
+
|
| 387 |
+
new_h = int(image_height / scale)
|
| 388 |
+
new_w = int(image_width / scale)
|
| 389 |
+
|
| 390 |
+
image = image.crop(((w - new_w) // 2, (h - new_h) // 2,
|
| 391 |
+
new_w + (w - new_w) // 2, new_h + (h - new_h) // 2)).resize((image_width, image_height))
|
| 392 |
+
|
| 393 |
+
for camera in cameras:
|
| 394 |
+
camera['fx'] = camera['fx'] * scale
|
| 395 |
+
camera['fy'] = camera['fy'] * scale
|
| 396 |
+
camera['cx'] = (camera['cx'] - (w - new_w) // 2) * scale
|
| 397 |
+
camera['cy'] = (camera['cy'] - (h - new_h) // 2) * scale
|
| 398 |
+
|
| 399 |
+
image = torch.from_numpy(np.array(image)).float().permute(2, 0, 1) / 255.0 * 2 - 1
|
| 400 |
+
else:
|
| 401 |
+
image = None
|
| 402 |
+
|
| 403 |
+
cameras = torch.stack([
|
| 404 |
+
torch.from_numpy(np.array([camera['quaternion'][0], camera['quaternion'][1], camera['quaternion'][2], camera['quaternion'][3], camera['position'][0], camera['position'][1], camera['position'][2], camera['fx'] / image_width, camera['fy'] / image_height, camera['cx'] / image_width, camera['cy'] / image_height], dtype=np.float32))
|
| 405 |
+
for camera in cameras
|
| 406 |
+
], dim=0)
|
| 407 |
+
|
| 408 |
+
file_id = str(int(time.time() * 1000))
|
| 409 |
+
|
| 410 |
+
start_time = time.time()
|
| 411 |
+
scene_params, ref_w2c, T_norm = generation_system.generate(cameras, n_frame, image, text_prompt, image_index, image_height, image_width, video_output_path=os.path.join(cache_dir, f'{file_id}.mp4'))
|
| 412 |
+
end_time = time.time()
|
| 413 |
+
print(f'生成时间: {end_time - start_time} 秒')
|
| 414 |
+
|
| 415 |
+
with open(os.path.join(cache_dir, f'{file_id}.json'), 'w') as f:
|
| 416 |
+
json.dump(data, f)
|
| 417 |
+
|
| 418 |
+
splat_path = os.path.join(cache_dir, f'{file_id}.ply')
|
| 419 |
+
|
| 420 |
+
export_ply_for_gaussians(splat_path, scene_params, opacity_threshold=0.001, T_norm=T_norm)
|
| 421 |
+
|
| 422 |
+
if not os.path.exists(splat_path):
|
| 423 |
+
return {'error': f'{splat_path} not found'}
|
| 424 |
+
|
| 425 |
+
file_size = os.path.getsize(splat_path)
|
| 426 |
+
|
| 427 |
+
response_data = {
|
| 428 |
+
'success': True,
|
| 429 |
+
'file_id': file_id,
|
| 430 |
+
'file_path': splat_path,
|
| 431 |
+
'file_size': file_size,
|
| 432 |
+
'download_url': f'/download/{file_id}',
|
| 433 |
+
'generation_time': end_time - start_time,
|
| 434 |
+
}
|
| 435 |
+
|
| 436 |
+
return response_data
|
| 437 |
+
|
| 438 |
+
except Exception as e:
|
| 439 |
+
return {'error': f'Processing error: {str(e)}'}
|
| 440 |
+
|
| 441 |
+
def gradio_generate(json_input, generation_system, cache_dir):
|
| 442 |
+
"""
|
| 443 |
+
Gradio interface function that processes JSON input and returns JSON output
|
| 444 |
+
"""
|
| 445 |
+
try:
|
| 446 |
+
# Parse JSON input
|
| 447 |
+
if isinstance(json_input, str):
|
| 448 |
+
data = json.loads(json_input)
|
| 449 |
+
else:
|
| 450 |
+
data = json_input
|
| 451 |
+
|
| 452 |
+
# Process the request
|
| 453 |
+
result = process_generation_request(data, generation_system, cache_dir)
|
| 454 |
+
|
| 455 |
+
# Return JSON response
|
| 456 |
+
return json.dumps(result, indent=2)
|
| 457 |
+
|
| 458 |
+
except Exception as e:
|
| 459 |
+
error_response = {'error': f'JSON processing error: {str(e)}'}
|
| 460 |
+
return json.dumps(error_response, indent=2)
|
| 461 |
+
|
| 462 |
+
def download_file(file_id, cache_dir):
|
| 463 |
+
"""
|
| 464 |
+
Download generated PLY file
|
| 465 |
+
"""
|
| 466 |
+
file_path = os.path.join(cache_dir, f'{file_id}.ply')
|
| 467 |
+
|
| 468 |
+
if not os.path.exists(file_path):
|
| 469 |
+
return None
|
| 470 |
+
|
| 471 |
+
return file_path
|
| 472 |
+
|
| 473 |
+
if __name__ == "__main__":
|
| 474 |
+
parser = argparse.ArgumentParser()
|
| 475 |
+
parser.add_argument('--port', type=int, default=7860)
|
| 476 |
+
parser.add_argument("--ckpt", default=None)
|
| 477 |
+
parser.add_argument("--gpu", type=int, default=0)
|
| 478 |
+
parser.add_argument("--cache_dir", type=str, default="./tmpfiles")
|
| 479 |
+
parser.add_argument("--offload_t5", type=bool, default=False)
|
| 480 |
+
parser.add_argument("--max_concurrent", type=int, default=1, help="Maximum concurrent generation tasks")
|
| 481 |
+
args, _ = parser.parse_known_args()
|
| 482 |
+
|
| 483 |
+
# Ensure model.ckpt exists, download if not present
|
| 484 |
+
if args.ckpt is None:
|
| 485 |
+
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
|
| 486 |
+
ckpt_path = os.path.join(HUGGINGFACE_HUB_CACHE, "models--imlixinyang--FlashWorld", "snapshots", "6a8e88c6f88678ac098e4c82675f0aee555d6e5d", "model.ckpt")
|
| 487 |
+
if not os.path.exists(ckpt_path):
|
| 488 |
+
hf_hub_download(repo_id="imlixinyang/FlashWorld", filename="model.ckpt", local_dir_use_symlinks=False)
|
| 489 |
+
else:
|
| 490 |
+
ckpt_path = args.ckpt
|
| 491 |
+
|
| 492 |
+
# Create cache directory
|
| 493 |
+
os.makedirs(args.cache_dir, exist_ok=True)
|
| 494 |
+
|
| 495 |
+
# Initialize GenerationSystem
|
| 496 |
+
device = f"cuda:{args.gpu}" if torch.cuda.is_available() else "cpu"
|
| 497 |
+
generation_system = GenerationSystem(ckpt_path=ckpt_path, device=device)
|
| 498 |
+
|
| 499 |
+
# Create Gradio interface
|
| 500 |
+
with gr.Blocks(title="FlashWorld Backend") as demo:
|
| 501 |
+
gr.Markdown("# FlashWorld Generation Backend")
|
| 502 |
+
gr.Markdown("This backend processes JSON requests for 3D scene generation.")
|
| 503 |
+
|
| 504 |
+
with gr.Row():
|
| 505 |
+
with gr.Column():
|
| 506 |
+
json_input = gr.Textbox(
|
| 507 |
+
label="JSON Input",
|
| 508 |
+
placeholder="Enter JSON request here...",
|
| 509 |
+
lines=10,
|
| 510 |
+
value='{"image_prompt": null, "text_prompt": "A beautiful landscape", "cameras": [...], "resolution": [16, 480, 704], "image_index": 0}'
|
| 511 |
+
)
|
| 512 |
+
|
| 513 |
+
generate_btn = gr.Button("Generate", variant="primary")
|
| 514 |
+
|
| 515 |
+
with gr.Column():
|
| 516 |
+
json_output = gr.Textbox(
|
| 517 |
+
label="JSON Output",
|
| 518 |
+
lines=10,
|
| 519 |
+
interactive=False
|
| 520 |
+
)
|
| 521 |
+
|
| 522 |
+
# File download section
|
| 523 |
+
gr.Markdown("## File Download")
|
| 524 |
+
with gr.Row():
|
| 525 |
+
file_id_input = gr.Textbox(
|
| 526 |
+
label="File ID",
|
| 527 |
+
placeholder="Enter file ID to download..."
|
| 528 |
+
)
|
| 529 |
+
download_btn = gr.Button("Download PLY File")
|
| 530 |
+
download_output = gr.File(label="Downloaded File")
|
| 531 |
+
|
| 532 |
+
# Event handlers
|
| 533 |
+
generate_btn.click(
|
| 534 |
+
fn=lambda json_input: gradio_generate(json_input, generation_system, args.cache_dir),
|
| 535 |
+
inputs=[json_input],
|
| 536 |
+
outputs=[json_output]
|
| 537 |
+
)
|
| 538 |
+
|
| 539 |
+
download_btn.click(
|
| 540 |
+
fn=lambda file_id: download_file(file_id, args.cache_dir),
|
| 541 |
+
inputs=[file_id_input],
|
| 542 |
+
outputs=[download_output]
|
| 543 |
+
)
|
| 544 |
+
|
| 545 |
+
# Example JSON format
|
| 546 |
+
gr.Markdown("""
|
| 547 |
+
## Example JSON Input Format:
|
| 548 |
+
```json
|
| 549 |
+
{
|
| 550 |
+
"image_prompt": null,
|
| 551 |
+
"text_prompt": "A beautiful landscape with mountains and trees",
|
| 552 |
+
"cameras": [
|
| 553 |
+
{
|
| 554 |
+
"quaternion": [0, 0, 0, 1],
|
| 555 |
+
"position": [0, 0, 5],
|
| 556 |
+
"fx": 500,
|
| 557 |
+
"fy": 500,
|
| 558 |
+
"cx": 240,
|
| 559 |
+
"cy": 240
|
| 560 |
+
}
|
| 561 |
+
],
|
| 562 |
+
"resolution": [16, 480, 704],
|
| 563 |
+
"image_index": 0
|
| 564 |
+
}
|
| 565 |
+
```
|
| 566 |
+
""")
|
| 567 |
+
|
| 568 |
+
# Launch the interface
|
| 569 |
+
demo.launch(
|
| 570 |
+
allowed_paths=[args.cache_dir]
|
| 571 |
+
)
|
index.html
CHANGED
|
@@ -685,151 +685,7 @@
|
|
| 685 |
if (progressText) progressText.textContent = text;
|
| 686 |
}
|
| 687 |
|
| 688 |
-
//
|
| 689 |
-
// Queue handling
|
| 690 |
-
// ==============
|
| 691 |
-
let queuePollTimer = null;
|
| 692 |
-
let currentTaskId = null;
|
| 693 |
-
let initialQueuePosition = null;
|
| 694 |
-
let latestGenerationTime = null;
|
| 695 |
-
let lastDownloadPct = 0;
|
| 696 |
-
let lastDownloadUpdateTs = 0;
|
| 697 |
-
|
| 698 |
-
function showQueueWaiting(position, runningCount, queuedCount) {
|
| 699 |
-
// Use only the progress bar to show queue progress (from initial position to 0)
|
| 700 |
-
showDownloadProgress();
|
| 701 |
-
if (initialQueuePosition === null) {
|
| 702 |
-
// Initialize from first seen position; ensure >= 1 so 0 -> 100%
|
| 703 |
-
const initPos = (typeof position === 'number') ? position : 0;
|
| 704 |
-
initialQueuePosition = Math.max(initPos, 1);
|
| 705 |
-
}
|
| 706 |
-
const percent = initialQueuePosition && initialQueuePosition > 0
|
| 707 |
-
? Math.max(0, Math.min(100, ((initialQueuePosition - (position || 0)) / initialQueuePosition) * 100))
|
| 708 |
-
: 0;
|
| 709 |
-
updateProgressBar(percent);
|
| 710 |
-
const totalWaiting = (position || 0) + (queuedCount || 0);
|
| 711 |
-
if (position !== null && position !== undefined) {
|
| 712 |
-
const pctText = `${Math.round(percent)}%`;
|
| 713 |
-
if (totalWaiting > 0) {
|
| 714 |
-
setProgressLabel(`Queued ${position}/${totalWaiting} (${pctText})`);
|
| 715 |
-
} else {
|
| 716 |
-
setProgressLabel(`Queued ${position} (${pctText})`);
|
| 717 |
-
}
|
| 718 |
-
} else {
|
| 719 |
-
setProgressLabel('Queued');
|
| 720 |
-
}
|
| 721 |
-
}
|
| 722 |
-
|
| 723 |
-
async function pollTaskUntilReady(taskId) {
|
| 724 |
-
currentTaskId = taskId;
|
| 725 |
-
initialQueuePosition = null;
|
| 726 |
-
if (queuePollTimer) {
|
| 727 |
-
clearInterval(queuePollTimer);
|
| 728 |
-
queuePollTimer = null;
|
| 729 |
-
}
|
| 730 |
-
const queueStartTs = Date.now();
|
| 731 |
-
|
| 732 |
-
const pollOnce = async () => {
|
| 733 |
-
try {
|
| 734 |
-
const resp = await fetch(`${guiOptions.BackendAddress}/task/${taskId}`);
|
| 735 |
-
if (!resp.ok) return;
|
| 736 |
-
const info = await resp.json();
|
| 737 |
-
if (!info || !info.success) return;
|
| 738 |
-
|
| 739 |
-
const pos = info.queue && typeof info.queue.position === 'number' ? info.queue.position : 0;
|
| 740 |
-
const running = info.queue ? info.queue.running_count : 0;
|
| 741 |
-
const queued = info.queue ? info.queue.queued_count : 0;
|
| 742 |
-
if (info.status === 'queued' || info.status === 'running') {
|
| 743 |
-
// Only progress bar; set stage label
|
| 744 |
-
if (info.status === 'queued') {
|
| 745 |
-
showQueueWaiting(pos, running, queued);
|
| 746 |
-
} else {
|
| 747 |
-
// Transitioned to running: finalize queue progress visually
|
| 748 |
-
updateProgressBar(100);
|
| 749 |
-
showDownloadProgress();
|
| 750 |
-
setProgressLabel('Generating...');
|
| 751 |
-
}
|
| 752 |
-
}
|
| 753 |
-
|
| 754 |
-
if (info.status === 'completed' && info.download_url) {
|
| 755 |
-
clearInterval(queuePollTimer);
|
| 756 |
-
queuePollTimer = null;
|
| 757 |
-
latestGenerationTime = typeof info.generation_time === 'number' ? info.generation_time : null;
|
| 758 |
-
// Proceed to download the generated file like the normal path
|
| 759 |
-
updateStatus('Downloading generated scene...', cameraParams.length);
|
| 760 |
-
const response = await fetch(guiOptions.BackendAddress + info.download_url);
|
| 761 |
-
if (!response.ok) throw new Error(`HTTP error! status: ${response.status}`);
|
| 762 |
-
const contentLength = response.headers.get('content-length');
|
| 763 |
-
const total = parseInt(contentLength || '0', 10);
|
| 764 |
-
// Show generation info immediately once we know it and total size from headers
|
| 765 |
-
showGenerationInfo(latestGenerationTime || 0, total);
|
| 766 |
-
let loaded = 0;
|
| 767 |
-
const reader = response.body.getReader();
|
| 768 |
-
const chunks = [];
|
| 769 |
-
updateProgressBar(0);
|
| 770 |
-
setProgressLabel('Downloading 0%');
|
| 771 |
-
lastDownloadPct = 0;
|
| 772 |
-
lastDownloadUpdateTs = 0;
|
| 773 |
-
while (true) {
|
| 774 |
-
const { done, value } = await reader.read();
|
| 775 |
-
if (done) break;
|
| 776 |
-
chunks.push(value);
|
| 777 |
-
loaded += value.length;
|
| 778 |
-
if (total) {
|
| 779 |
-
const pct = Math.min(100, (loaded / total) * 100);
|
| 780 |
-
const now = Date.now();
|
| 781 |
-
const rounded = Math.round(pct);
|
| 782 |
-
// Throttle and enforce monotonic increase
|
| 783 |
-
if (rounded > Math.round(lastDownloadPct) || (now - lastDownloadUpdateTs) > 200) {
|
| 784 |
-
lastDownloadPct = Math.max(lastDownloadPct, pct);
|
| 785 |
-
updateProgressBar(lastDownloadPct);
|
| 786 |
-
setProgressLabel(`Downloading ${Math.round(lastDownloadPct)}%`);
|
| 787 |
-
lastDownloadUpdateTs = now;
|
| 788 |
-
}
|
| 789 |
-
}
|
| 790 |
-
}
|
| 791 |
-
|
| 792 |
-
if (instructionSplat) {
|
| 793 |
-
scene.remove(instructionSplat);
|
| 794 |
-
console.log('Instruction splat removed');
|
| 795 |
-
instructionSplat = null;
|
| 796 |
-
}
|
| 797 |
-
|
| 798 |
-
const blob = new Blob(chunks);
|
| 799 |
-
const url = URL.createObjectURL(blob);
|
| 800 |
-
// Continue to load the splat
|
| 801 |
-
updateStatus('Loading generated scene...', cameraParams.length);
|
| 802 |
-
|
| 803 |
-
const GeneratedSplat = new SplatMesh({ url });
|
| 804 |
-
scene.add(GeneratedSplat);
|
| 805 |
-
currentGeneratedSplat = GeneratedSplat;
|
| 806 |
-
updateStatus('Scene generated successfully!', cameraParams.length);
|
| 807 |
-
// Show generation time and total file size (MB)
|
| 808 |
-
showGenerationInfo(latestGenerationTime || 0, total || blob.size);
|
| 809 |
-
// Notify backend to delete the server file after client has downloaded it
|
| 810 |
-
try {
|
| 811 |
-
if (info.file_id) {
|
| 812 |
-
const resp = await fetch(`${guiOptions.BackendAddress}/delete/${info.file_id}`, { method: 'POST' });
|
| 813 |
-
if (!resp.ok) console.warn('Delete notify failed');
|
| 814 |
-
}
|
| 815 |
-
} catch (e) {
|
| 816 |
-
console.warn('Delete notify error', e);
|
| 817 |
-
}
|
| 818 |
-
hideDownloadProgress();
|
| 819 |
-
showLoading(false);
|
| 820 |
-
} else if (info.status === 'failed') {
|
| 821 |
-
clearInterval(queuePollTimer);
|
| 822 |
-
queuePollTimer = null;
|
| 823 |
-
throw new Error(info.error || 'Generation failed');
|
| 824 |
-
}
|
| 825 |
-
} catch (e) {
|
| 826 |
-
console.debug('Polling error:', e);
|
| 827 |
-
}
|
| 828 |
-
};
|
| 829 |
-
|
| 830 |
-
await pollOnce();
|
| 831 |
-
queuePollTimer = setInterval(pollOnce, 2000);
|
| 832 |
-
}
|
| 833 |
|
| 834 |
// Hide download progress
|
| 835 |
function hideDownloadProgress() {
|
|
@@ -885,7 +741,7 @@
|
|
| 885 |
|
| 886 |
// GUI Options - declare early
|
| 887 |
const guiOptions = {
|
| 888 |
-
// 后端地址,默认为本页面ip
|
| 889 |
BackendAddress: `${window.location.protocol}//${window.location.hostname}:7860`,
|
| 890 |
FOV: 60,
|
| 891 |
LoadFromJson: () => {
|
|
@@ -1057,82 +913,208 @@
|
|
| 1057 |
console.log('Interpolated cameras:', interpolatedCameras.length);
|
| 1058 |
updateStatus('Sending request to backend...', cameraParams.length);
|
| 1059 |
|
| 1060 |
-
//
|
| 1061 |
-
|
| 1062 |
-
|
| 1063 |
-
|
| 1064 |
-
|
| 1065 |
-
|
| 1066 |
-
|
| 1067 |
-
|
| 1068 |
-
|
| 1069 |
-
|
| 1070 |
-
|
| 1071 |
-
|
| 1072 |
-
|
| 1073 |
-
|
| 1074 |
-
],
|
| 1075 |
-
|
| 1076 |
-
|
| 1077 |
-
|
| 1078 |
-
|
| 1079 |
-
|
| 1080 |
-
|
| 1081 |
-
|
| 1082 |
-
|
| 1083 |
-
cy: inputImageBase64 && inputImageResolution
|
| 1084 |
-
? 0.5 * inputImageResolution.height
|
| 1085 |
-
: 0.5 * parseInt(guiOptions.Resolution.split('x')[1]),
|
| 1086 |
-
}))
|
| 1087 |
-
});
|
| 1088 |
-
} else {
|
| 1089 |
-
|
| 1090 |
-
}
|
| 1091 |
|
| 1092 |
-
//
|
| 1093 |
-
fetch(
|
| 1094 |
method: 'POST',
|
| 1095 |
headers: { 'Content-Type': 'application/json' },
|
| 1096 |
mode: 'cors',
|
| 1097 |
-
body:
|
| 1098 |
-
|
| 1099 |
-
|
| 1100 |
-
const contentType = response.headers.get('content-type');
|
| 1101 |
-
if (contentType && contentType.includes('application/json')) {
|
| 1102 |
-
return response.json();
|
| 1103 |
-
} else {
|
| 1104 |
-
return response.blob().then(blob => {
|
| 1105 |
-
const url = URL.createObjectURL(blob);
|
| 1106 |
-
return { url };
|
| 1107 |
-
});
|
| 1108 |
-
}
|
| 1109 |
})
|
|
|
|
| 1110 |
.then(data => {
|
| 1111 |
-
console.log(data);
|
| 1112 |
-
|
| 1113 |
-
|
| 1114 |
-
|
| 1115 |
-
|
| 1116 |
-
|
| 1117 |
-
|
| 1118 |
-
|
| 1119 |
-
|
| 1120 |
-
|
| 1121 |
-
|
| 1122 |
-
|
| 1123 |
-
|
| 1124 |
-
|
| 1125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1126 |
}
|
| 1127 |
})
|
| 1128 |
.then(data => {
|
| 1129 |
if (data.url) {
|
| 1130 |
updateStatus('Loading 3D scene...', cameraParams.length);
|
|
|
|
| 1131 |
// Remove the instruction splat when generation is complete
|
| 1132 |
if (instructionSplat) {
|
| 1133 |
scene.remove(instructionSplat);
|
| 1134 |
console.log('Instruction splat removed');
|
| 1135 |
}
|
|
|
|
| 1136 |
const GeneratedSplat = new SplatMesh({ url: data.url });
|
| 1137 |
scene.add(GeneratedSplat);
|
| 1138 |
currentGeneratedSplat = GeneratedSplat; // 保存新生成的场景引用
|
|
@@ -1517,7 +1499,7 @@
|
|
| 1517 |
|
| 1518 |
// Step 1: Configure Generation Settings
|
| 1519 |
const step1Folder = gui.addFolder('1. Configure Settings');
|
| 1520 |
-
step1Folder.add(guiOptions, "BackendAddress").name("Backend Address");
|
| 1521 |
|
| 1522 |
// FOV和Resolution控制器,初始时启用
|
| 1523 |
const fovController = step1Folder.add(guiOptions, "FOV", 0, 120, 1).name("FOV").onChange((value) => {
|
|
|
|
| 685 |
if (progressText) progressText.textContent = text;
|
| 686 |
}
|
| 687 |
|
| 688 |
+
// Gradio handles concurrency automatically, no need for queue polling
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 689 |
|
| 690 |
// Hide download progress
|
| 691 |
function hideDownloadProgress() {
|
|
|
|
| 741 |
|
| 742 |
// GUI Options - declare early
|
| 743 |
const guiOptions = {
|
| 744 |
+
// Gradio后端地址,默认为本页面ip:7860
|
| 745 |
BackendAddress: `${window.location.protocol}//${window.location.hostname}:7860`,
|
| 746 |
FOV: 60,
|
| 747 |
LoadFromJson: () => {
|
|
|
|
| 913 |
console.log('Interpolated cameras:', interpolatedCameras.length);
|
| 914 |
updateStatus('Sending request to backend...', cameraParams.length);
|
| 915 |
|
| 916 |
+
// Gradio后端:使用Gradio API
|
| 917 |
+
const requestData = {
|
| 918 |
+
image_prompt: inputImageBase64 ? inputImageBase64 : "",
|
| 919 |
+
text_prompt: guiOptions.inputTextPrompt,
|
| 920 |
+
image_index: 0,
|
| 921 |
+
resolution: [
|
| 922 |
+
parseInt(guiOptions.Resolution.split('x')[0]),
|
| 923 |
+
parseInt(guiOptions.Resolution.split('x')[1]),
|
| 924 |
+
parseInt(guiOptions.Resolution.split('x')[2])
|
| 925 |
+
],
|
| 926 |
+
cameras: interpolatedCameras.map(cam => ({
|
| 927 |
+
position: [cam.position.x, cam.position.y, cam.position.z],
|
| 928 |
+
quaternion: [cam.quaternion.w, cam.quaternion.x, cam.quaternion.y, cam.quaternion.z],
|
| 929 |
+
fx: 0.5 / Math.tan(0.5 * cam.fov * Math.PI / 180) * parseInt(guiOptions.Resolution.split('x')[1]),
|
| 930 |
+
fy: 0.5 / Math.tan(0.5 * cam.fov * Math.PI / 180) * parseInt(guiOptions.Resolution.split('x')[1]),
|
| 931 |
+
cx: inputImageBase64 && inputImageResolution
|
| 932 |
+
? 0.5 * inputImageResolution.width
|
| 933 |
+
: 0.5 * parseInt(guiOptions.Resolution.split('x')[2]),
|
| 934 |
+
cy: inputImageBase64 && inputImageResolution
|
| 935 |
+
? 0.5 * inputImageResolution.height
|
| 936 |
+
: 0.5 * parseInt(guiOptions.Resolution.split('x')[1]),
|
| 937 |
+
}))
|
| 938 |
+
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 939 |
|
| 940 |
+
// 请求Gradio后端生成
|
| 941 |
+
fetch(guiOptions.BackendAddress + '/gradio_api/call/gradio_generate', {
|
| 942 |
method: 'POST',
|
| 943 |
headers: { 'Content-Type': 'application/json' },
|
| 944 |
mode: 'cors',
|
| 945 |
+
body: JSON.stringify({
|
| 946 |
+
data: [JSON.stringify(requestData)]
|
| 947 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 948 |
})
|
| 949 |
+
.then(response => response.json())
|
| 950 |
.then(data => {
|
| 951 |
+
console.log('Gradio response:', data);
|
| 952 |
+
|
| 953 |
+
// Gradio总是返回event_id,需要先获取生成结果
|
| 954 |
+
if (data.event_id) {
|
| 955 |
+
console.log('Got EVENT_ID from generation call:', data.event_id);
|
| 956 |
+
|
| 957 |
+
// 使用EVENT_ID获取生成结果(SSE格式)
|
| 958 |
+
return fetch(guiOptions.BackendAddress + `/gradio_api/call/gradio_generate/${data.event_id}`)
|
| 959 |
+
.then(response => {
|
| 960 |
+
if (!response.ok) {
|
| 961 |
+
throw new Error(`HTTP error! status: ${response.status}`);
|
| 962 |
+
}
|
| 963 |
+
return response.text();
|
| 964 |
+
})
|
| 965 |
+
.then(sseText => {
|
| 966 |
+
console.log('SSE response:', sseText);
|
| 967 |
+
|
| 968 |
+
// 解析SSE格式的响应
|
| 969 |
+
const lines = sseText.split('\n');
|
| 970 |
+
let eventType = null;
|
| 971 |
+
let dataContent = null;
|
| 972 |
+
|
| 973 |
+
for (const line of lines) {
|
| 974 |
+
if (line.startsWith('event: ')) {
|
| 975 |
+
eventType = line.substring(7);
|
| 976 |
+
} else if (line.startsWith('data: ')) {
|
| 977 |
+
dataContent = line.substring(6);
|
| 978 |
+
}
|
| 979 |
+
}
|
| 980 |
+
|
| 981 |
+
console.log('Event type:', eventType, 'Data:', dataContent);
|
| 982 |
+
|
| 983 |
+
if (eventType === 'complete' && dataContent) {
|
| 984 |
+
// 解析JSON数据
|
| 985 |
+
const resultData = JSON.parse(dataContent);
|
| 986 |
+
console.log('Generation result:', resultData);
|
| 987 |
+
|
| 988 |
+
// 解析生成结果
|
| 989 |
+
if (resultData && resultData.length > 0) {
|
| 990 |
+
const responseData = JSON.parse(resultData[0]);
|
| 991 |
+
console.log('Gradio generation successful:', responseData);
|
| 992 |
+
|
| 993 |
+
if (responseData.success && responseData.download_url) {
|
| 994 |
+
console.log('Generation time:', responseData.generation_time, 'seconds');
|
| 995 |
+
console.log('File size:', responseData.file_size, 'bytes');
|
| 996 |
+
|
| 997 |
+
// 显示生成信息
|
| 998 |
+
showGenerationInfo(responseData.generation_time, responseData.file_size);
|
| 999 |
+
showDownloadProgress();
|
| 1000 |
+
updateStatus('Downloading generated scene...', cameraParams.length);
|
| 1001 |
+
|
| 1002 |
+
// 现在下载文件,也需要两步:先获取下载的EVENT_ID,再下载文件
|
| 1003 |
+
return fetch(guiOptions.BackendAddress + '/gradio_api/call/download_file', {
|
| 1004 |
+
method: 'POST',
|
| 1005 |
+
headers: { 'Content-Type': 'application/json' },
|
| 1006 |
+
body: JSON.stringify({
|
| 1007 |
+
data: [responseData.file_id]
|
| 1008 |
+
})
|
| 1009 |
+
})
|
| 1010 |
+
.then(response => response.json())
|
| 1011 |
+
.then(downloadEventData => {
|
| 1012 |
+
console.log('Download EVENT_ID:', downloadEventData.event_id);
|
| 1013 |
+
|
| 1014 |
+
// 使用下载的EVENT_ID获取文件信息(SSE格式)
|
| 1015 |
+
return fetch(guiOptions.BackendAddress + `/gradio_api/call/download_file/${downloadEventData.event_id}`)
|
| 1016 |
+
.then(response => {
|
| 1017 |
+
if (!response.ok) {
|
| 1018 |
+
throw new Error(`HTTP error! status: ${response.status}`);
|
| 1019 |
+
}
|
| 1020 |
+
return response.text();
|
| 1021 |
+
})
|
| 1022 |
+
.then(sseText => {
|
| 1023 |
+
console.log('Download SSE response:', sseText);
|
| 1024 |
+
|
| 1025 |
+
// 解析SSE格式的响应
|
| 1026 |
+
const lines = sseText.split('\n');
|
| 1027 |
+
let eventType = null;
|
| 1028 |
+
let dataContent = null;
|
| 1029 |
+
|
| 1030 |
+
for (const line of lines) {
|
| 1031 |
+
if (line.startsWith('event: ')) {
|
| 1032 |
+
eventType = line.substring(7);
|
| 1033 |
+
} else if (line.startsWith('data: ')) {
|
| 1034 |
+
dataContent = line.substring(6);
|
| 1035 |
+
}
|
| 1036 |
+
}
|
| 1037 |
+
|
| 1038 |
+
console.log('Download event type:', eventType, 'Data:', dataContent);
|
| 1039 |
+
|
| 1040 |
+
if (eventType === 'complete' && dataContent) {
|
| 1041 |
+
// 解析文件信息
|
| 1042 |
+
const fileData = JSON.parse(dataContent);
|
| 1043 |
+
console.log('File data:', fileData);
|
| 1044 |
+
|
| 1045 |
+
if (fileData && fileData.length > 0 && fileData[0].url) {
|
| 1046 |
+
const fileUrl = fileData[0].url;
|
| 1047 |
+
console.log('File URL:', fileUrl);
|
| 1048 |
+
|
| 1049 |
+
// 从返回的URL下载实际文件
|
| 1050 |
+
return fetch(fileUrl)
|
| 1051 |
+
.then(response => {
|
| 1052 |
+
if (!response.ok) {
|
| 1053 |
+
throw new Error(`HTTP error! status: ${response.status}`);
|
| 1054 |
+
}
|
| 1055 |
+
|
| 1056 |
+
const contentLength = response.headers.get('content-length');
|
| 1057 |
+
const total = parseInt(contentLength, 10);
|
| 1058 |
+
let loaded = 0;
|
| 1059 |
+
|
| 1060 |
+
const reader = response.body.getReader();
|
| 1061 |
+
const chunks = [];
|
| 1062 |
+
|
| 1063 |
+
function pump() {
|
| 1064 |
+
return reader.read().then(({ done, value }) => {
|
| 1065 |
+
if (done) {
|
| 1066 |
+
return new Blob(chunks);
|
| 1067 |
+
}
|
| 1068 |
+
|
| 1069 |
+
chunks.push(value);
|
| 1070 |
+
loaded += value.length;
|
| 1071 |
+
|
| 1072 |
+
if (total) {
|
| 1073 |
+
const percentage = (loaded / total) * 100;
|
| 1074 |
+
updateProgressBar(percentage);
|
| 1075 |
+
}
|
| 1076 |
+
|
| 1077 |
+
return pump();
|
| 1078 |
+
});
|
| 1079 |
+
}
|
| 1080 |
+
|
| 1081 |
+
return pump().then(blob => {
|
| 1082 |
+
const url = URL.createObjectURL(blob);
|
| 1083 |
+
return { url };
|
| 1084 |
+
});
|
| 1085 |
+
});
|
| 1086 |
+
} else {
|
| 1087 |
+
throw new Error('Invalid file data format from Gradio');
|
| 1088 |
+
}
|
| 1089 |
+
} else {
|
| 1090 |
+
throw new Error('Gradio download SSE response not complete or missing data');
|
| 1091 |
+
}
|
| 1092 |
+
});
|
| 1093 |
+
});
|
| 1094 |
+
} else {
|
| 1095 |
+
throw new Error('Gradio generation failed: ' + (responseData.error || 'Unknown error'));
|
| 1096 |
+
}
|
| 1097 |
+
} else {
|
| 1098 |
+
throw new Error('Invalid Gradio generation result format');
|
| 1099 |
+
}
|
| 1100 |
+
} else {
|
| 1101 |
+
throw new Error('Gradio SSE response not complete or missing data');
|
| 1102 |
+
}
|
| 1103 |
+
});
|
| 1104 |
+
} else {
|
| 1105 |
+
throw new Error('Invalid Gradio response format - no event_id');
|
| 1106 |
}
|
| 1107 |
})
|
| 1108 |
.then(data => {
|
| 1109 |
if (data.url) {
|
| 1110 |
updateStatus('Loading 3D scene...', cameraParams.length);
|
| 1111 |
+
|
| 1112 |
// Remove the instruction splat when generation is complete
|
| 1113 |
if (instructionSplat) {
|
| 1114 |
scene.remove(instructionSplat);
|
| 1115 |
console.log('Instruction splat removed');
|
| 1116 |
}
|
| 1117 |
+
|
| 1118 |
const GeneratedSplat = new SplatMesh({ url: data.url });
|
| 1119 |
scene.add(GeneratedSplat);
|
| 1120 |
currentGeneratedSplat = GeneratedSplat; // 保存新生成的场景引用
|
|
|
|
| 1499 |
|
| 1500 |
// Step 1: Configure Generation Settings
|
| 1501 |
const step1Folder = gui.addFolder('1. Configure Settings');
|
| 1502 |
+
step1Folder.add(guiOptions, "BackendAddress").name("Gradio Backend Address");
|
| 1503 |
|
| 1504 |
// FOV和Resolution控制器,初始时启用
|
| 1505 |
const fovController = step1Folder.add(guiOptions, "FOV", 0, 120, 1).name("FOV").onChange((value) => {
|