|
import argparse
|
|
import pandas as pd
|
|
from generate_schema import generate_schema
|
|
from fetch_data import fetch_real_data
|
|
from synthetic_generator import train_and_generate_synthetic
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--prompt", type=str, required=True, help="Describe the dataset you want")
|
|
parser.add_argument("--domain", type=str, default="healthcare", help="Domain to fetch real data from (optional)")
|
|
args = parser.parse_args()
|
|
|
|
|
|
schema = generate_schema(args.prompt)
|
|
print(f"π Generated schema: {schema}")
|
|
|
|
|
|
real_data = fetch_real_data(args.domain)
|
|
|
|
|
|
real_data = real_data[schema['columns']]
|
|
print(f"β
Fetched real data with shape: {real_data.shape}")
|
|
|
|
|
|
output_path = f"outputs/synthetic_{args.domain}.csv"
|
|
train_and_generate_synthetic(real_data, schema, output_path)
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|