Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,21 @@
|
|
1 |
from huggingface_hub import from_pretrained_fastai
|
2 |
import gradio as gr
|
3 |
-
from fastai.vision.all import *
|
4 |
from icevision.all import *
|
5 |
|
6 |
# repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME"
|
7 |
repo_id = "inigo99/kangaroo-detector"
|
8 |
|
9 |
class_map = ClassMap(['kangaroo'])
|
10 |
-
model = models.
|
11 |
-
|
12 |
-
state_dict = torch.load(
|
13 |
model.load_state_dict(state_dict)
|
14 |
|
15 |
# Definimos una función que se encarga de llevar a cabo las predicciones
|
16 |
def predict(img):
|
17 |
#img = PILImage.create(img)
|
18 |
infer_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(384),tfms.A.Normalize()])
|
19 |
-
pred_dict = models.
|
20 |
return pred_dict['img']
|
21 |
|
22 |
# Creamos la interfaz y la lanzamos.
|
|
|
1 |
from huggingface_hub import from_pretrained_fastai
|
2 |
import gradio as gr
|
|
|
3 |
from icevision.all import *
|
4 |
|
5 |
# repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME"
|
6 |
repo_id = "inigo99/kangaroo-detector"
|
7 |
|
8 |
class_map = ClassMap(['kangaroo'])
|
9 |
+
model = models.torchvision.faster_rcnn.model(backbone=models.torchvision.faster_rcnn.backbones.resnet18_fpn(pretrained=True),
|
10 |
+
num_classes=len(class_map))
|
11 |
+
state_dict = torch.load("fasterRCNNkangaroo.pth")
|
12 |
model.load_state_dict(state_dict)
|
13 |
|
14 |
# Definimos una función que se encarga de llevar a cabo las predicciones
|
15 |
def predict(img):
|
16 |
#img = PILImage.create(img)
|
17 |
infer_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(384),tfms.A.Normalize()])
|
18 |
+
pred_dict = models.torchvision.faster_rcnn.end2end_detect(img, infer_tfms, model.to("cpu"), class_map=class_map, detection_threshold=0.5)
|
19 |
return pred_dict['img']
|
20 |
|
21 |
# Creamos la interfaz y la lanzamos.
|