Spaces:
Runtime error
Runtime error
init app
Browse files
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
os.system('cd monotonic_align && python setup.py build_ext --inplace && cd ..')
|
4 |
+
|
5 |
+
import logging
|
6 |
+
|
7 |
+
numba_logger = logging.getLogger('numba')
|
8 |
+
numba_logger.setLevel(logging.WARNING)
|
9 |
+
|
10 |
+
import librosa
|
11 |
+
import torch
|
12 |
+
|
13 |
+
import commons
|
14 |
+
import utils
|
15 |
+
from models import SynthesizerTrn
|
16 |
+
from text.symbols import symbols
|
17 |
+
from text import text_to_sequence
|
18 |
+
|
19 |
+
|
20 |
+
def get_text(text, hps):
|
21 |
+
text_norm = text_to_sequence(text, hps.data.text_cleaners)
|
22 |
+
if hps.data.add_blank:
|
23 |
+
text_norm = commons.intersperse(text_norm, 0)
|
24 |
+
text_norm = torch.LongTensor(text_norm)
|
25 |
+
print(text_norm.shape)
|
26 |
+
return text_norm
|
27 |
+
|
28 |
+
|
29 |
+
hps = utils.get_hparams_from_file("configs/ljs_base.json")
|
30 |
+
|
31 |
+
net_g = SynthesizerTrn(
|
32 |
+
len(symbols),
|
33 |
+
hps.data.filter_length // 2 + 1,
|
34 |
+
hps.train.segment_size // hps.data.hop_length,
|
35 |
+
**hps.model)
|
36 |
+
import numpy as np
|
37 |
+
|
38 |
+
hubert = torch.hub.load("bshall/hubert:main", "hubert_soft")
|
39 |
+
|
40 |
+
_ = utils.load_checkpoint("G_88000.pth", net_g, None)
|
41 |
+
|
42 |
+
def vc_fn(input_audio):
|
43 |
+
if input_audio is None:
|
44 |
+
return "You need to upload an audio", None
|
45 |
+
sampling_rate, audio = input_audio
|
46 |
+
# print(audio.shape,sampling_rate)
|
47 |
+
duration = audio.shape[0] / sampling_rate
|
48 |
+
if duration > 30:
|
49 |
+
return "Error: Audio is too long", None
|
50 |
+
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
51 |
+
if len(audio.shape) > 1:
|
52 |
+
audio = librosa.to_mono(audio.transpose(1, 0))
|
53 |
+
if sampling_rate != 16000:
|
54 |
+
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
|
55 |
+
source = torch.FloatTensor(audio).unsqueeze(0).unsqueeze(0)
|
56 |
+
print(source.shape)
|
57 |
+
with torch.inference_mode():
|
58 |
+
units = hubert.units(source)
|
59 |
+
|
60 |
+
stn_tst = torch.FloatTensor(units.squeeze(0))
|
61 |
+
with torch.no_grad():
|
62 |
+
x_tst = stn_tst.unsqueeze(0)
|
63 |
+
x_tst_lengths = torch.LongTensor([stn_tst.size(0)])
|
64 |
+
audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=0.1, noise_scale_w=0.1, length_scale=1)[0][
|
65 |
+
0, 0].data.float().numpy()
|
66 |
+
|
67 |
+
return "Success", (hps.data.sampling_rate, audio)
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
app = gr.Blocks()
|
72 |
+
with app:
|
73 |
+
with gr.Tabs():
|
74 |
+
with gr.TabItem("Basic"):
|
75 |
+
vc_input3 = gr.Audio(label="Input Audio (30s limitation)")
|
76 |
+
vc_submit = gr.Button("Convert", variant="primary")
|
77 |
+
vc_output1 = gr.Textbox(label="Output Message")
|
78 |
+
vc_output2 = gr.Audio(label="Output Audio")
|
79 |
+
vc_submit.click(vc_fn, [ vc_input3], [vc_output1, vc_output2])
|
80 |
+
|
81 |
+
app.launch()
|