Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import subprocess | |
import os | |
import shutil | |
import tempfile | |
import spaces | |
import torch | |
import sys | |
import uuid | |
import re | |
print("Installing flash-attn...") | |
# Install flash attention | |
subprocess.run( | |
"pip install flash-attn --no-build-isolation", | |
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, | |
shell=True | |
) | |
from huggingface_hub import snapshot_download | |
# Create xcodec_mini_infer folder | |
folder_path = './xcodec_mini_infer' | |
# Create the folder if it doesn't exist | |
if not os.path.exists(folder_path): | |
os.mkdir(folder_path) | |
print(f"Folder created at: {folder_path}") | |
else: | |
print(f"Folder already exists at: {folder_path}") | |
snapshot_download( | |
repo_id="m-a-p/xcodec_mini_infer", | |
local_dir="./xcodec_mini_infer" | |
) | |
# Change to the "inference" directory | |
inference_dir = "." | |
try: | |
os.chdir(inference_dir) | |
print(f"Changed working directory to: {os.getcwd()}") | |
except FileNotFoundError: | |
print(f"Directory not found: {inference_dir}") | |
exit(1) | |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer')) | |
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec')) | |
# don't change above code | |
import argparse | |
import numpy as np | |
import json | |
from omegaconf import OmegaConf | |
import torchaudio | |
from torchaudio.transforms import Resample | |
import soundfile as sf | |
from tqdm import tqdm | |
from einops import rearrange | |
from codecmanipulator import CodecManipulator | |
from mmtokenizer import _MMSentencePieceTokenizer | |
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList | |
import glob | |
import time | |
import copy | |
from collections import Counter | |
from models.soundstream_hubert_new import SoundStream | |
from vocoder import build_codec_model, process_audio | |
from post_process_audio import replace_low_freq_with_energy_matched | |
device = "cuda:0" | |
model = AutoModelForCausalLM.from_pretrained( | |
"m-a-p/YuE-s1-7B-anneal-en-cot", | |
torch_dtype=torch.float16, | |
attn_implementation="flash_attention_2", | |
# low_cpu_mem_usage=True, | |
).to(device) | |
model.eval() | |
basic_model_config = './xcodec_mini_infer/final_ckpt/config.yaml' | |
resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth' | |
config_path = './xcodec_mini_infer/decoders/config.yaml' | |
vocal_decoder_path = './xcodec_mini_infer/decoders/decoder_131000.pth' | |
inst_decoder_path = './xcodec_mini_infer/decoders/decoder_151000.pth' | |
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model") | |
codectool = CodecManipulator("xcodec", 0, 1) | |
model_config = OmegaConf.load(basic_model_config) | |
# Load codec model | |
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device) | |
parameter_dict = torch.load(resume_path, map_location='cpu') | |
codec_model.load_state_dict(parameter_dict['codec_model']) | |
# codec_model = torch.compile(codec_model) | |
codec_model.eval() | |
# Preload and compile vocoders | |
vocal_decoder, inst_decoder = build_codec_model(config_path, vocal_decoder_path, inst_decoder_path) | |
vocal_decoder.to(device) | |
inst_decoder.to(device) | |
# vocal_decoder = torch.compile(vocal_decoder) | |
# inst_decoder = torch.compile(inst_decoder) | |
vocal_decoder.eval() | |
inst_decoder.eval() | |
def generate_music( | |
max_new_tokens=5, | |
run_n_segments=2, | |
genre_txt=None, | |
lyrics_txt=None, | |
use_audio_prompt=False, | |
audio_prompt_path="", | |
prompt_start_time=0.0, | |
prompt_end_time=30.0, | |
cuda_idx=0, | |
rescale=False, | |
): | |
if use_audio_prompt and not audio_prompt_path: | |
raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!") | |
cuda_idx = cuda_idx | |
max_new_tokens = max_new_tokens * 100 | |
with tempfile.TemporaryDirectory() as output_dir: | |
stage1_output_dir = os.path.join(output_dir, f"stage1") | |
os.makedirs(stage1_output_dir, exist_ok=True) | |
class BlockTokenRangeProcessor(LogitsProcessor): | |
def __init__(self, start_id, end_id): | |
self.blocked_token_ids = list(range(start_id, end_id)) | |
def __call__(self, input_ids, scores): | |
scores[:, self.blocked_token_ids] = -float("inf") | |
return scores | |
def load_audio_mono(filepath, sampling_rate=16000): | |
audio, sr = torchaudio.load(filepath) | |
# Convert to mono | |
audio = torch.mean(audio, dim=0, keepdim=True) | |
# Resample if needed | |
if sr != sampling_rate: | |
resampler = Resample(orig_freq=sr, new_freq=sampling_rate) | |
audio = resampler(audio) | |
return audio | |
def split_lyrics(lyrics: str): | |
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)" | |
segments = re.findall(pattern, lyrics, re.DOTALL) | |
structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments] | |
return structured_lyrics | |
# Call the function and print the result | |
stage1_output_set = [] | |
genres = genre_txt.strip() | |
lyrics = split_lyrics(lyrics_txt + "\n") | |
# intruction | |
full_lyrics = "\n".join(lyrics) | |
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"] | |
prompt_texts += lyrics | |
random_id = uuid.uuid4() | |
output_seq = None | |
# Here is suggested decoding config | |
top_p = 0.93 | |
temperature = 1.0 | |
repetition_penalty = 1.2 | |
# special tokens | |
start_of_segment = mmtokenizer.tokenize('[start_of_segment]') | |
end_of_segment = mmtokenizer.tokenize('[end_of_segment]') | |
raw_output = None | |
# Format text prompt | |
run_n_segments = min(run_n_segments + 1, len(lyrics)) | |
print(list(enumerate(tqdm(prompt_texts[:run_n_segments])))) | |
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])): | |
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '') | |
guidance_scale = 1.5 if i <= 1 else 1.2 | |
if i == 0: | |
continue | |
if i == 1: | |
if use_audio_prompt: | |
audio_prompt = load_audio_mono(audio_prompt_path) | |
audio_prompt.unsqueeze_(0) | |
with torch.no_grad(): | |
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5) | |
raw_codes = raw_codes.transpose(0, 1) | |
raw_codes = raw_codes.cpu().numpy().astype(np.int16) | |
# Format audio prompt | |
code_ids = codectool.npy2ids(raw_codes[0]) | |
audio_prompt_codec = code_ids[int(prompt_start_time * 50): int(prompt_end_time * 50)] # 50 is tps of xcodec | |
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [ | |
mmtokenizer.eoa] | |
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize( | |
"[end_of_reference]") | |
head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids | |
else: | |
head_id = mmtokenizer.tokenize(prompt_texts[0]) | |
prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids | |
else: | |
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids | |
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device) | |
input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids | |
# Use window slicing in case output sequence exceeds the context of model | |
max_context = 16384 - max_new_tokens - 1 | |
if input_ids.shape[-1] > max_context: | |
print( | |
f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.') | |
input_ids = input_ids[:, -(max_context):] | |
with torch.inference_mode(), torch.autocast(device_type='cuda', dtype=torch.float16): | |
output_seq = model.generate( | |
input_ids=input_ids, | |
max_new_tokens=max_new_tokens, | |
min_new_tokens=100, | |
do_sample=True, | |
top_p=top_p, | |
temperature=temperature, | |
repetition_penalty=repetition_penalty, | |
eos_token_id=mmtokenizer.eoa, | |
pad_token_id=mmtokenizer.eoa, | |
logits_processor=LogitsProcessorList([BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]), | |
guidance_scale=guidance_scale, | |
use_cache=True, # KV Caching is enabled here! | |
top_k=50, | |
num_beams=1 | |
) | |
if output_seq[0][-1].item() != mmtokenizer.eoa: | |
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device) | |
output_seq = torch.cat((output_seq, tensor_eoa), dim=1) | |
if i > 1: | |
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1) | |
else: | |
raw_output = output_seq | |
print(len(raw_output)) | |
# save raw output and check sanity | |
ids = raw_output[0].cpu().numpy() | |
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist() | |
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist() | |
if len(soa_idx) != len(eoa_idx): | |
raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}') | |
vocals = [] | |
instrumentals = [] | |
range_begin = 1 if use_audio_prompt else 0 | |
for i in range(range_begin, len(soa_idx)): | |
codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]] | |
if codec_ids[0] == 32016: | |
codec_ids = codec_ids[1:] | |
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)] | |
vocals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0]) | |
vocals.append(vocals_ids) | |
instrumentals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1]) | |
instrumentals.append(instrumentals_ids) | |
vocals = np.concatenate(vocals, axis=1) | |
instrumentals = np.concatenate(instrumentals, axis=1) | |
vocal_save_path = os.path.join(stage1_output_dir, f"vocal_{random_id}".replace('.', '@') + '.npy') | |
inst_save_path = os.path.join(stage1_output_dir, f"instrumental_{random_id}".replace('.', '@') + '.npy') | |
np.save(vocal_save_path, vocals) | |
np.save(inst_save_path, instrumentals) | |
stage1_output_set.append(vocal_save_path) | |
stage1_output_set.append(inst_save_path) | |
print("Converting to Audio...") | |
# convert audio tokens to audio | |
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False): | |
folder_path = os.path.dirname(path) | |
if not os.path.exists(folder_path): | |
os.makedirs(folder_path) | |
limit = 0.99 | |
max_val = wav.abs().max() | |
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit) | |
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16) | |
# reconstruct tracks | |
recons_output_dir = os.path.join(output_dir, "recons") | |
recons_mix_dir = os.path.join(recons_output_dir, 'mix') | |
os.makedirs(recons_mix_dir, exist_ok=True) | |
tracks = [] | |
for npy in stage1_output_set: | |
codec_result = np.load(npy) | |
decodec_rlt = [] | |
with torch.no_grad(): | |
decoded_waveform = codec_model.decode( | |
torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to( | |
device)) | |
decoded_waveform = decoded_waveform.cpu().squeeze(0) | |
decodec_rlt.append(torch.as_tensor(decoded_waveform)) | |
decodec_rlt = torch.cat(decodec_rlt, dim=-1) | |
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3") | |
tracks.append(save_path) | |
save_audio(decodec_rlt, save_path, 16000) | |
# mix tracks | |
for inst_path in tracks: | |
try: | |
if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) \ | |
and 'instrumental' in inst_path: | |
# find pair | |
vocal_path = inst_path.replace('instrumental', 'vocal') | |
if not os.path.exists(vocal_path): | |
continue | |
# mix | |
recons_mix = os.path.join(recons_mix_dir, | |
os.path.basename(inst_path).replace('instrumental', 'mixed')) | |
vocal_stem, sr = sf.read(inst_path) | |
instrumental_stem, _ = sf.read(vocal_path) | |
mix_stem = (vocal_stem + instrumental_stem) / 1 | |
sf.write(recons_mix, mix_stem, sr) | |
except Exception as e: | |
print(e) | |
# vocoder to upsample audios | |
vocoder_output_dir = os.path.join(output_dir, 'vocoder') | |
vocoder_stems_dir = os.path.join(vocoder_output_dir, 'stems') | |
vocoder_mix_dir = os.path.join(vocoder_output_dir, 'mix') | |
os.makedirs(vocoder_mix_dir, exist_ok=True) | |
os.makedirs(vocoder_stems_dir, exist_ok=True) | |
instrumental_output = None | |
vocal_output = None | |
for npy in stage1_output_set: | |
if 'instrumental' in npy: | |
# Process instrumental | |
instrumental_output = process_audio( | |
npy, | |
os.path.join(vocoder_stems_dir, 'instrumental.mp3'), | |
rescale, | |
argparse.Namespace(**locals()), # Convert local variables to argparse.Namespace | |
inst_decoder, | |
codec_model | |
) | |
else: | |
# Process vocal | |
vocal_output = process_audio( | |
npy, | |
os.path.join(vocoder_stems_dir, 'vocal.mp3'), | |
rescale, | |
argparse.Namespace(**locals()), # Convert local variables to argparse.Namespace | |
vocal_decoder, | |
codec_model | |
) | |
# mix tracks | |
try: | |
mix_output = instrumental_output + vocal_output | |
vocoder_mix = os.path.join(vocoder_mix_dir, os.path.basename(recons_mix)) | |
save_audio(mix_output, vocoder_mix, 44100, rescale) | |
print(f"Created mix: {vocoder_mix}") | |
except RuntimeError as e: | |
print(e) | |
print(f"mix {vocoder_mix} failed! inst: {instrumental_output.shape}, vocal: {vocal_output.shape}") | |
# Post process | |
final_output_path = os.path.join(output_dir, os.path.basename(recons_mix)) | |
replace_low_freq_with_energy_matched( | |
a_file=recons_mix, # 16kHz | |
b_file=vocoder_mix, # 48kHz | |
c_file=final_output_path, | |
cutoff_freq=5500.0 | |
) | |
print("All process Done") | |
# Load the final audio file and return the numpy array | |
final_audio, sr = torchaudio.load(final_output_path) | |
return (sr, final_audio.squeeze().numpy()) | |
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=15): | |
# Execute the command | |
try: | |
audio_data = generate_music(genre_txt=genre_txt_content, lyrics_txt=lyrics_txt_content, run_n_segments=num_segments, | |
cuda_idx=0, max_new_tokens=max_new_tokens) | |
return audio_data | |
except Exception as e: | |
gr.Warning("An Error Occured: " + str(e)) | |
return None | |
finally: | |
print("Temporary files deleted.") | |
# Gradio | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation") | |
gr.HTML(""" | |
<div style="display:flex;column-gap:4px;"> | |
<a href="https://github.com/multimodal-art-projection/YuE"> | |
<img src='https://img.shields.io/badge/GitHub-Repo-blue'> | |
</a> | |
<a href="https://map-yue.github.io"> | |
<img src='https://img.shields.io/badge/Project-Page-green'> | |
</a> | |
<a href="https://huggingface.co/spaces/innova-ai/YuE-music-generator-demo?duplicate=true"> | |
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space"> | |
</a> | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
genre_txt = gr.Textbox(label="Genre") | |
lyrics_txt = gr.Textbox(label="Lyrics") | |
with gr.Column(): | |
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True) | |
max_new_tokens = gr.Slider(label="Duration of song", minimum=1, maximum=30, step=1, value=15, | |
interactive=True) | |
submit_btn = gr.Button("Submit") | |
music_out = gr.Audio(label="Audio Result") | |
gr.Examples( | |
examples=[ | |
[ | |
"rap piano street tough piercing vocal hip-hop synthesizer clear vocal male", | |
"""[verse] | |
Late nights grinding, writing down these rhymes | |
Clock is ticking fast, can't afford to waste time | |
Haters gonna hate, but I brush it off | |
Turn the negativity into something strong | |
Mama working hard, wanna make her proud | |
Echoes of her prayers cutting through the crowd | |
Friends turned strangers, but it's all good | |
Focused on my path like I always knew I would | |
[chorus] | |
This is my life, and I'm aiming for the top | |
Never gonna quit, no, I'm never gonna stop | |
Through the highs and lows, I'mma keep it real | |
Living out my dreams with this mic and a deal | |
""" | |
], | |
[ | |
"rap piano street tough piercing vocal hip-hop synthesizer clear vocal male", | |
"""[verse] | |
Woke up in the morning, sun is shining bright | |
Chasing all my dreams, gotta get my mind right | |
City lights are fading, but my vision's clear | |
Got my team beside me, no room for fear | |
Walking through the streets, beats inside my head | |
Every step I take, closer to the bread | |
People passing by, they don't understand | |
Building up my future with my own two hands | |
[chorus] | |
This is my life, and I'm aiming for the top | |
Never gonna quit, no, I'm never gonna stop | |
Through the highs and lows, I'mma keep it real | |
Living out my dreams with this mic and a deal | |
""" | |
] | |
], | |
inputs=[genre_txt, lyrics_txt], | |
outputs=[music_out], | |
cache_examples=True, | |
cache_mode="eager", | |
fn=infer | |
) | |
submit_btn.click( | |
fn=infer, | |
inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens], | |
outputs=[music_out] | |
) | |
demo.queue().launch(show_error=True) |