KingNish's picture
Update app.py
6932a08 verified
import gradio as gr
import subprocess
import os
import shutil
import tempfile
import spaces
import torch
import sys
import uuid
import re
print("Installing flash-attn...")
# Install flash attention
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True
)
from huggingface_hub import snapshot_download
# Create xcodec_mini_infer folder
folder_path = './xcodec_mini_infer'
# Create the folder if it doesn't exist
if not os.path.exists(folder_path):
os.mkdir(folder_path)
print(f"Folder created at: {folder_path}")
else:
print(f"Folder already exists at: {folder_path}")
snapshot_download(
repo_id="m-a-p/xcodec_mini_infer",
local_dir="./xcodec_mini_infer"
)
# Change to the "inference" directory
inference_dir = "."
try:
os.chdir(inference_dir)
print(f"Changed working directory to: {os.getcwd()}")
except FileNotFoundError:
print(f"Directory not found: {inference_dir}")
exit(1)
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
# don't change above code
import argparse
import numpy as np
import json
from omegaconf import OmegaConf
import torchaudio
from torchaudio.transforms import Resample
import soundfile as sf
from tqdm import tqdm
from einops import rearrange
from codecmanipulator import CodecManipulator
from mmtokenizer import _MMSentencePieceTokenizer
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
import glob
import time
import copy
from collections import Counter
from models.soundstream_hubert_new import SoundStream
from vocoder import build_codec_model, process_audio
from post_process_audio import replace_low_freq_with_energy_matched
device = "cuda:0"
model = AutoModelForCausalLM.from_pretrained(
"m-a-p/YuE-s1-7B-anneal-en-cot",
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
# low_cpu_mem_usage=True,
).to(device)
model.eval()
basic_model_config = './xcodec_mini_infer/final_ckpt/config.yaml'
resume_path = './xcodec_mini_infer/final_ckpt/ckpt_00360000.pth'
config_path = './xcodec_mini_infer/decoders/config.yaml'
vocal_decoder_path = './xcodec_mini_infer/decoders/decoder_131000.pth'
inst_decoder_path = './xcodec_mini_infer/decoders/decoder_151000.pth'
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
codectool = CodecManipulator("xcodec", 0, 1)
model_config = OmegaConf.load(basic_model_config)
# Load codec model
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
parameter_dict = torch.load(resume_path, map_location='cpu')
codec_model.load_state_dict(parameter_dict['codec_model'])
# codec_model = torch.compile(codec_model)
codec_model.eval()
# Preload and compile vocoders
vocal_decoder, inst_decoder = build_codec_model(config_path, vocal_decoder_path, inst_decoder_path)
vocal_decoder.to(device)
inst_decoder.to(device)
# vocal_decoder = torch.compile(vocal_decoder)
# inst_decoder = torch.compile(inst_decoder)
vocal_decoder.eval()
inst_decoder.eval()
def generate_music(
max_new_tokens=5,
run_n_segments=2,
genre_txt=None,
lyrics_txt=None,
use_audio_prompt=False,
audio_prompt_path="",
prompt_start_time=0.0,
prompt_end_time=30.0,
cuda_idx=0,
rescale=False,
):
if use_audio_prompt and not audio_prompt_path:
raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!")
cuda_idx = cuda_idx
max_new_tokens = max_new_tokens * 100
with tempfile.TemporaryDirectory() as output_dir:
stage1_output_dir = os.path.join(output_dir, f"stage1")
os.makedirs(stage1_output_dir, exist_ok=True)
class BlockTokenRangeProcessor(LogitsProcessor):
def __init__(self, start_id, end_id):
self.blocked_token_ids = list(range(start_id, end_id))
def __call__(self, input_ids, scores):
scores[:, self.blocked_token_ids] = -float("inf")
return scores
def load_audio_mono(filepath, sampling_rate=16000):
audio, sr = torchaudio.load(filepath)
# Convert to mono
audio = torch.mean(audio, dim=0, keepdim=True)
# Resample if needed
if sr != sampling_rate:
resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
audio = resampler(audio)
return audio
def split_lyrics(lyrics: str):
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
segments = re.findall(pattern, lyrics, re.DOTALL)
structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
return structured_lyrics
# Call the function and print the result
stage1_output_set = []
genres = genre_txt.strip()
lyrics = split_lyrics(lyrics_txt + "\n")
# intruction
full_lyrics = "\n".join(lyrics)
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
prompt_texts += lyrics
random_id = uuid.uuid4()
output_seq = None
# Here is suggested decoding config
top_p = 0.93
temperature = 1.0
repetition_penalty = 1.2
# special tokens
start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
raw_output = None
# Format text prompt
run_n_segments = min(run_n_segments + 1, len(lyrics))
print(list(enumerate(tqdm(prompt_texts[:run_n_segments]))))
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
guidance_scale = 1.5 if i <= 1 else 1.2
if i == 0:
continue
if i == 1:
if use_audio_prompt:
audio_prompt = load_audio_mono(audio_prompt_path)
audio_prompt.unsqueeze_(0)
with torch.no_grad():
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5)
raw_codes = raw_codes.transpose(0, 1)
raw_codes = raw_codes.cpu().numpy().astype(np.int16)
# Format audio prompt
code_ids = codectool.npy2ids(raw_codes[0])
audio_prompt_codec = code_ids[int(prompt_start_time * 50): int(prompt_end_time * 50)] # 50 is tps of xcodec
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [
mmtokenizer.eoa]
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize(
"[end_of_reference]")
head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids
else:
head_id = mmtokenizer.tokenize(prompt_texts[0])
prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
else:
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device)
input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids
# Use window slicing in case output sequence exceeds the context of model
max_context = 16384 - max_new_tokens - 1
if input_ids.shape[-1] > max_context:
print(
f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.')
input_ids = input_ids[:, -(max_context):]
with torch.inference_mode(), torch.autocast(device_type='cuda', dtype=torch.float16):
output_seq = model.generate(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
min_new_tokens=100,
do_sample=True,
top_p=top_p,
temperature=temperature,
repetition_penalty=repetition_penalty,
eos_token_id=mmtokenizer.eoa,
pad_token_id=mmtokenizer.eoa,
logits_processor=LogitsProcessorList([BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]),
guidance_scale=guidance_scale,
use_cache=True, # KV Caching is enabled here!
top_k=50,
num_beams=1
)
if output_seq[0][-1].item() != mmtokenizer.eoa:
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device)
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
if i > 1:
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1)
else:
raw_output = output_seq
print(len(raw_output))
# save raw output and check sanity
ids = raw_output[0].cpu().numpy()
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist()
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist()
if len(soa_idx) != len(eoa_idx):
raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}')
vocals = []
instrumentals = []
range_begin = 1 if use_audio_prompt else 0
for i in range(range_begin, len(soa_idx)):
codec_ids = ids[soa_idx[i] + 1:eoa_idx[i]]
if codec_ids[0] == 32016:
codec_ids = codec_ids[1:]
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)]
vocals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[0])
vocals.append(vocals_ids)
instrumentals_ids = codectool.ids2npy(rearrange(codec_ids, "(n b) -> b n", b=2)[1])
instrumentals.append(instrumentals_ids)
vocals = np.concatenate(vocals, axis=1)
instrumentals = np.concatenate(instrumentals, axis=1)
vocal_save_path = os.path.join(stage1_output_dir, f"vocal_{random_id}".replace('.', '@') + '.npy')
inst_save_path = os.path.join(stage1_output_dir, f"instrumental_{random_id}".replace('.', '@') + '.npy')
np.save(vocal_save_path, vocals)
np.save(inst_save_path, instrumentals)
stage1_output_set.append(vocal_save_path)
stage1_output_set.append(inst_save_path)
print("Converting to Audio...")
# convert audio tokens to audio
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False):
folder_path = os.path.dirname(path)
if not os.path.exists(folder_path):
os.makedirs(folder_path)
limit = 0.99
max_val = wav.abs().max()
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
# reconstruct tracks
recons_output_dir = os.path.join(output_dir, "recons")
recons_mix_dir = os.path.join(recons_output_dir, 'mix')
os.makedirs(recons_mix_dir, exist_ok=True)
tracks = []
for npy in stage1_output_set:
codec_result = np.load(npy)
decodec_rlt = []
with torch.no_grad():
decoded_waveform = codec_model.decode(
torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(
device))
decoded_waveform = decoded_waveform.cpu().squeeze(0)
decodec_rlt.append(torch.as_tensor(decoded_waveform))
decodec_rlt = torch.cat(decodec_rlt, dim=-1)
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3")
tracks.append(save_path)
save_audio(decodec_rlt, save_path, 16000)
# mix tracks
for inst_path in tracks:
try:
if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) \
and 'instrumental' in inst_path:
# find pair
vocal_path = inst_path.replace('instrumental', 'vocal')
if not os.path.exists(vocal_path):
continue
# mix
recons_mix = os.path.join(recons_mix_dir,
os.path.basename(inst_path).replace('instrumental', 'mixed'))
vocal_stem, sr = sf.read(inst_path)
instrumental_stem, _ = sf.read(vocal_path)
mix_stem = (vocal_stem + instrumental_stem) / 1
sf.write(recons_mix, mix_stem, sr)
except Exception as e:
print(e)
# vocoder to upsample audios
vocoder_output_dir = os.path.join(output_dir, 'vocoder')
vocoder_stems_dir = os.path.join(vocoder_output_dir, 'stems')
vocoder_mix_dir = os.path.join(vocoder_output_dir, 'mix')
os.makedirs(vocoder_mix_dir, exist_ok=True)
os.makedirs(vocoder_stems_dir, exist_ok=True)
instrumental_output = None
vocal_output = None
for npy in stage1_output_set:
if 'instrumental' in npy:
# Process instrumental
instrumental_output = process_audio(
npy,
os.path.join(vocoder_stems_dir, 'instrumental.mp3'),
rescale,
argparse.Namespace(**locals()), # Convert local variables to argparse.Namespace
inst_decoder,
codec_model
)
else:
# Process vocal
vocal_output = process_audio(
npy,
os.path.join(vocoder_stems_dir, 'vocal.mp3'),
rescale,
argparse.Namespace(**locals()), # Convert local variables to argparse.Namespace
vocal_decoder,
codec_model
)
# mix tracks
try:
mix_output = instrumental_output + vocal_output
vocoder_mix = os.path.join(vocoder_mix_dir, os.path.basename(recons_mix))
save_audio(mix_output, vocoder_mix, 44100, rescale)
print(f"Created mix: {vocoder_mix}")
except RuntimeError as e:
print(e)
print(f"mix {vocoder_mix} failed! inst: {instrumental_output.shape}, vocal: {vocal_output.shape}")
# Post process
final_output_path = os.path.join(output_dir, os.path.basename(recons_mix))
replace_low_freq_with_energy_matched(
a_file=recons_mix, # 16kHz
b_file=vocoder_mix, # 48kHz
c_file=final_output_path,
cutoff_freq=5500.0
)
print("All process Done")
# Load the final audio file and return the numpy array
final_audio, sr = torchaudio.load(final_output_path)
return (sr, final_audio.squeeze().numpy())
@spaces.GPU(duration=120)
def infer(genre_txt_content, lyrics_txt_content, num_segments=2, max_new_tokens=15):
# Execute the command
try:
audio_data = generate_music(genre_txt=genre_txt_content, lyrics_txt=lyrics_txt_content, run_n_segments=num_segments,
cuda_idx=0, max_new_tokens=max_new_tokens)
return audio_data
except Exception as e:
gr.Warning("An Error Occured: " + str(e))
return None
finally:
print("Temporary files deleted.")
# Gradio
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# YuE: Open Music Foundation Models for Full-Song Generation")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/multimodal-art-projection/YuE">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://map-yue.github.io">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://huggingface.co/spaces/innova-ai/YuE-music-generator-demo?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
</div>
""")
with gr.Row():
with gr.Column():
genre_txt = gr.Textbox(label="Genre")
lyrics_txt = gr.Textbox(label="Lyrics")
with gr.Column():
num_segments = gr.Number(label="Number of Segments", value=2, interactive=True)
max_new_tokens = gr.Slider(label="Duration of song", minimum=1, maximum=30, step=1, value=15,
interactive=True)
submit_btn = gr.Button("Submit")
music_out = gr.Audio(label="Audio Result")
gr.Examples(
examples=[
[
"rap piano street tough piercing vocal hip-hop synthesizer clear vocal male",
"""[verse]
Late nights grinding, writing down these rhymes
Clock is ticking fast, can't afford to waste time
Haters gonna hate, but I brush it off
Turn the negativity into something strong
Mama working hard, wanna make her proud
Echoes of her prayers cutting through the crowd
Friends turned strangers, but it's all good
Focused on my path like I always knew I would
[chorus]
This is my life, and I'm aiming for the top
Never gonna quit, no, I'm never gonna stop
Through the highs and lows, I'mma keep it real
Living out my dreams with this mic and a deal
"""
],
[
"rap piano street tough piercing vocal hip-hop synthesizer clear vocal male",
"""[verse]
Woke up in the morning, sun is shining bright
Chasing all my dreams, gotta get my mind right
City lights are fading, but my vision's clear
Got my team beside me, no room for fear
Walking through the streets, beats inside my head
Every step I take, closer to the bread
People passing by, they don't understand
Building up my future with my own two hands
[chorus]
This is my life, and I'm aiming for the top
Never gonna quit, no, I'm never gonna stop
Through the highs and lows, I'mma keep it real
Living out my dreams with this mic and a deal
"""
]
],
inputs=[genre_txt, lyrics_txt],
outputs=[music_out],
cache_examples=True,
cache_mode="eager",
fn=infer
)
submit_btn.click(
fn=infer,
inputs=[genre_txt, lyrics_txt, num_segments, max_new_tokens],
outputs=[music_out]
)
demo.queue().launch(show_error=True)