Spaces:
Running
on
Zero
Running
on
Zero
new file: codecmanipulator.py
Browse files- codecmanipulator.py +203 -0
- mmtokenizer.py +367 -0
codecmanipulator.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import numpy as np
|
3 |
+
import einops
|
4 |
+
|
5 |
+
|
6 |
+
class CodecManipulator(object):
|
7 |
+
r"""
|
8 |
+
**mm tokenizer v0.1**
|
9 |
+
see codeclm/hf/mm_tokenizer_v0.1_hf/id2vocab.json
|
10 |
+
|
11 |
+
text tokens:
|
12 |
+
llama tokenizer 0~31999
|
13 |
+
|
14 |
+
special tokens: "32000": "<EOD>", "32001": "<SOA>", "32002": "<EOA>", "32003": "<SOI>", "32004": "<EOI>", "32005": "<SOV>", "32006": "<EOV>", "32007": "<s_local>", "32008": "<e_local>", "32009": "<s_global>", "32010": "<e_global>", "32011": "<semantic>", "32012": "<acoustic>", "32013": "<low_level>", "32014": "<dac_16k>", "32015": "<dac_44k>", "32016": "<xcodec>", "32017": "<placeholder>", "32018": "<semantic_mert>", "32019": "<semantic_hubert>", "32020": "<visual>", "32021": "<semanticodec>"
|
15 |
+
|
16 |
+
mm tokens:
|
17 |
+
dac_16k: 4 codebook, 1024 vocab, 32022 - 36117
|
18 |
+
dac_44k: 9 codebook, 1024 vocab, 36118 - 45333
|
19 |
+
xcodec: 12 codebook, 1024 vocab, 45334 - 57621
|
20 |
+
semantic mert: 1024, 57622 - 58645
|
21 |
+
semantic hubert: 512, 58646 - 59157
|
22 |
+
visual: 64000, not included in v0.1
|
23 |
+
semanticodec 100tps 16384: semantic=16384, 59158 - 75541, acoustic=8192, 75542 - 83733
|
24 |
+
"""
|
25 |
+
def __init__(self, codec_type, quantizer_begin=None, n_quantizer=None, teacher_forcing=False, data_feature="codec"):
|
26 |
+
self.codec_type = codec_type
|
27 |
+
self.mm_v0_2_cfg = {
|
28 |
+
"dac16k": {"codebook_size": 1024, "num_codebooks": 4, "global_offset": 32022, "sep": ["<dac_16k>"], "fps": 50},
|
29 |
+
"dac44k": {"codebook_size": 1024, "num_codebooks": 9, "global_offset": 36118, "sep": ["<dac_44k>"]},
|
30 |
+
"xcodec": {"codebook_size": 1024, "num_codebooks": 12, "global_offset": 45334, "sep": ["<xcodec>"], "fps": 50},
|
31 |
+
"mert": {"codebook_size": 1024, "global_offset": 57622, "sep": ["<semantic_mert>"]},
|
32 |
+
"hubert": {"codebook_size": 512, "global_offset": 58646, "sep": ["<semantic_hubert>"]},
|
33 |
+
"semantic/s": {"codebook_size": 16384, "num_codebooks": 1, "global_offset": 59158, "sep": ["<semanticodec>", "<semantic>"]},
|
34 |
+
"semantic/a": {"codebook_size": 8192, "num_codebooks": 1, "global_offset": 75542, "sep": ["<semanticodec>", "<acoustic>"]},
|
35 |
+
"semanticodec": {"codebook_size": [16384, 8192], "num_codebooks": 2, "global_offset": 59158, "sep": ["<semanticodec>"], "fps": 50},
|
36 |
+
"special_tokens": {
|
37 |
+
'<EOD>': 32000, '<SOA>': 32001, '<EOA>': 32002, '<SOI>': 32003, '<EOI>': 32004, '<SOV>': 32005, '<EOV>': 32006, '<s_local>': 32007, '<e_local>': 32008, '<s_global>': 32009, '<e_global>': 32010, '<semantic>': 32011, '<acoustic>': 32012, '<stage_1>': 32013, '<dac_16k>': 32014, '<dac_44k>': 32015, '<xcodec>': 32016, '<stage_2>': 32017, '<semantic_mert>': 32018, '<semantic_hubert>': 32019, '<visual>': 32020, '<semanticodec>': 32021
|
38 |
+
},
|
39 |
+
"metadata": {
|
40 |
+
"len": 83734,
|
41 |
+
"text_range": [0, 31999],
|
42 |
+
"special_range": [32000, 32021],
|
43 |
+
"mm_range": [32022, 83733]
|
44 |
+
},
|
45 |
+
"codec_range": {
|
46 |
+
"dac16k": [32022, 36117],
|
47 |
+
"dac44k": [36118, 45333],
|
48 |
+
"xcodec": [45334, 57621],
|
49 |
+
# "hifi16k": [53526, 57621],
|
50 |
+
"mert": [57622, 58645],
|
51 |
+
"hubert": [58646, 59157],
|
52 |
+
"semantic/s": [59158, 75541],
|
53 |
+
"semantic/a": [75542, 83733],
|
54 |
+
"semanticodec": [59158, 83733]
|
55 |
+
}
|
56 |
+
}
|
57 |
+
self.sep = self.mm_v0_2_cfg[self.codec_type]["sep"]
|
58 |
+
self.sep_ids = [self.mm_v0_2_cfg["special_tokens"][s] for s in self.sep]
|
59 |
+
self.codebook_size = self.mm_v0_2_cfg[self.codec_type]["codebook_size"]
|
60 |
+
self.num_codebooks = self.mm_v0_2_cfg[self.codec_type]["num_codebooks"]
|
61 |
+
self.global_offset = self.mm_v0_2_cfg[self.codec_type]["global_offset"]
|
62 |
+
self.fps = self.mm_v0_2_cfg[self.codec_type]["fps"] if "fps" in self.mm_v0_2_cfg[self.codec_type] else None
|
63 |
+
|
64 |
+
self.quantizer_begin = quantizer_begin if quantizer_begin is not None else 0
|
65 |
+
self.n_quantizer = n_quantizer if n_quantizer is not None else self.num_codebooks
|
66 |
+
self.teacher_forcing = teacher_forcing
|
67 |
+
self.data_feature = data_feature
|
68 |
+
|
69 |
+
|
70 |
+
def offset_tok_ids(self, x, global_offset=0, codebook_size=2048, num_codebooks=4):
|
71 |
+
"""
|
72 |
+
x: (K, T)
|
73 |
+
"""
|
74 |
+
if isinstance(codebook_size, int):
|
75 |
+
assert x.max() < codebook_size, f"max(x)={x.max()}, codebook_size={codebook_size}"
|
76 |
+
elif isinstance(codebook_size, list):
|
77 |
+
for i, cs in enumerate(codebook_size):
|
78 |
+
assert x[i].max() < cs, f"max(x)={x[i].max()}, codebook_size={cs}, layer_id={i}"
|
79 |
+
else:
|
80 |
+
raise ValueError(f"codebook_size={codebook_size}")
|
81 |
+
assert x.min() >= 0, f"min(x)={x.min()}"
|
82 |
+
assert x.shape[0] == num_codebooks or x.shape[0] == self.n_quantizer, \
|
83 |
+
f"x.shape[0]={x.shape[0]}, num_codebooks={num_codebooks}, n_quantizer={self.n_quantizer}"
|
84 |
+
|
85 |
+
_x = x.copy()
|
86 |
+
_x = _x.astype(np.uint32)
|
87 |
+
cum_offset = 0
|
88 |
+
quantizer_begin = self.quantizer_begin
|
89 |
+
quantizer_end = quantizer_begin+self.n_quantizer
|
90 |
+
for k in range(self.quantizer_begin, quantizer_end): # k: quantizer_begin to quantizer_end - 1
|
91 |
+
if isinstance(codebook_size, int):
|
92 |
+
_x[k] += global_offset + k * codebook_size
|
93 |
+
elif isinstance(codebook_size, list):
|
94 |
+
_x[k] += global_offset + cum_offset
|
95 |
+
cum_offset += codebook_size[k]
|
96 |
+
else:
|
97 |
+
raise ValueError(f"codebook_size={codebook_size}")
|
98 |
+
return _x[quantizer_begin:quantizer_end]
|
99 |
+
|
100 |
+
def unoffset_tok_ids(self, x, global_offset=0, codebook_size=2048, num_codebooks=4):
|
101 |
+
"""
|
102 |
+
x: (K, T)
|
103 |
+
"""
|
104 |
+
if isinstance(codebook_size, int):
|
105 |
+
assert x.max() < global_offset + codebook_size * num_codebooks, f"max(x)={x.max()}, codebook_size={codebook_size}"
|
106 |
+
elif isinstance(codebook_size, list):
|
107 |
+
assert x.max() < global_offset + sum(codebook_size), f"max(x)={x.max()}, codebook_size={codebook_size}"
|
108 |
+
assert x.min() >= global_offset, f"min(x)={x.min()}, global_offset={global_offset}"
|
109 |
+
assert x.shape[0] == num_codebooks or x.shape[0] == self.n_quantizer, \
|
110 |
+
f"x.shape[0]={x.shape[0]}, num_codebooks={num_codebooks}, n_quantizer={self.n_quantizer}"
|
111 |
+
|
112 |
+
_x = x.copy()
|
113 |
+
_x = _x.astype(np.uint32)
|
114 |
+
cum_offset = 0
|
115 |
+
quantizer_begin = self.quantizer_begin
|
116 |
+
quantizer_end = quantizer_begin+self.n_quantizer
|
117 |
+
for k in range(quantizer_begin, quantizer_end):
|
118 |
+
if isinstance(codebook_size, int):
|
119 |
+
_x[k-quantizer_begin] -= global_offset + k * codebook_size
|
120 |
+
elif isinstance(codebook_size, list):
|
121 |
+
_x[k-quantizer_begin] -= global_offset + cum_offset
|
122 |
+
cum_offset += codebook_size[k]
|
123 |
+
else:
|
124 |
+
raise ValueError(f"codebook_size={codebook_size}")
|
125 |
+
return _x
|
126 |
+
|
127 |
+
def flatten(self, x):
|
128 |
+
if len(x.shape) > 2:
|
129 |
+
x = x.squeeze()
|
130 |
+
assert x.shape[0] == self.num_codebooks or x.shape[0] == self.n_quantizer, \
|
131 |
+
f"x.shape[0]={x.shape[0]}, num_codebooks={self.num_codebooks}, n_quantizer={self.n_quantizer}"
|
132 |
+
return einops.rearrange(x, 'K T -> (T K)')
|
133 |
+
|
134 |
+
def unflatten(self, x, n_quantizer=None):
|
135 |
+
x = x.squeeze()
|
136 |
+
assert len(x.shape) == 1
|
137 |
+
assert x.shape[0] % self.num_codebooks == 0 or x.shape[0] % self.n_quantizer == 0, \
|
138 |
+
f"x.shape[0]={x.shape[0]}, num_codebooks={self.num_codebooks}, n_quantizer={self.n_quantizer}"
|
139 |
+
if n_quantizer!=self.num_codebooks:
|
140 |
+
return einops.rearrange(x, '(T K) -> K T', K=n_quantizer)
|
141 |
+
return einops.rearrange(x, '(T K) -> K T', K=self.num_codebooks)
|
142 |
+
|
143 |
+
# def check_codec_type_from_path(self, path):
|
144 |
+
# if self.codec_type == "hifi16k":
|
145 |
+
# assert "academicodec_hifi_16k_320d_large_uni" in path
|
146 |
+
|
147 |
+
def get_codec_type_from_range(self, ids):
|
148 |
+
ids_range = [ids.min(), ids.max()]
|
149 |
+
codec_range = self.mm_v0_2_cfg["codec_range"]
|
150 |
+
for codec_type, r in codec_range.items():
|
151 |
+
if ids_range[0] >= r[0] and ids_range[1] <= r[1]:
|
152 |
+
return codec_type
|
153 |
+
raise ValueError(f"ids_range={ids_range}, codec_range={codec_range}")
|
154 |
+
|
155 |
+
def npy2ids(self, npy):
|
156 |
+
if isinstance(npy, str):
|
157 |
+
data = np.load(npy)
|
158 |
+
elif isinstance(npy, np.ndarray):
|
159 |
+
data = npy
|
160 |
+
else:
|
161 |
+
raise ValueError(f"not supported type: {type(npy)}")
|
162 |
+
# data = data.squeeze()
|
163 |
+
|
164 |
+
assert len(data.shape)==2, f'data shape: {data.shape} is not (n_codebook, seq_len)'
|
165 |
+
data = self.offset_tok_ids(
|
166 |
+
data,
|
167 |
+
global_offset=self.global_offset,
|
168 |
+
codebook_size=self.codebook_size,
|
169 |
+
num_codebooks=self.num_codebooks,
|
170 |
+
)
|
171 |
+
data = self.flatten(data)
|
172 |
+
codec_range = self.get_codec_type_from_range(data)
|
173 |
+
assert codec_range == self.codec_type, f"get_codec_type_from_range(data)={codec_range}, self.codec_type={self.codec_type}"
|
174 |
+
data = data.tolist()
|
175 |
+
return data
|
176 |
+
|
177 |
+
def ids2npy(self, token_ids):
|
178 |
+
# make sure token_ids starts with codebook 0
|
179 |
+
if isinstance(self.codebook_size, int):
|
180 |
+
codebook_0_range = (self.global_offset + self.quantizer_begin*self.codebook_size, self.global_offset + (self.quantizer_begin+1)*self.codebook_size)
|
181 |
+
elif isinstance(self.codebook_size, list):
|
182 |
+
codebook_0_range = (self.global_offset, self.global_offset + self.codebook_size[0])
|
183 |
+
assert token_ids[0] >= codebook_0_range[0] \
|
184 |
+
and token_ids[0] < codebook_0_range[1], f"token_ids[0]={token_ids[self.quantizer_begin]}, codebook_0_range={codebook_0_range}"
|
185 |
+
data = np.array(token_ids)
|
186 |
+
data = self.unflatten(data, n_quantizer=self.n_quantizer)
|
187 |
+
data = self.unoffset_tok_ids(
|
188 |
+
data,
|
189 |
+
global_offset=self.global_offset,
|
190 |
+
codebook_size=self.codebook_size,
|
191 |
+
num_codebooks=self.num_codebooks,
|
192 |
+
)
|
193 |
+
return data
|
194 |
+
|
195 |
+
def npy_to_json_str(self, npy_path):
|
196 |
+
data = self.npy2ids(npy_path)
|
197 |
+
return json.dumps({"text": data, "src": npy_path, "codec": self.codec_type})
|
198 |
+
|
199 |
+
def sep(self):
|
200 |
+
return ''.join(self.sep)
|
201 |
+
|
202 |
+
def sep_ids(self):
|
203 |
+
return self.sep_ids
|
mmtokenizer.py
ADDED
@@ -0,0 +1,367 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC
|
2 |
+
from abc import abstractmethod
|
3 |
+
|
4 |
+
|
5 |
+
class AbstractTokenizer(ABC):
|
6 |
+
"""Abstract class for tokenizer."""
|
7 |
+
|
8 |
+
def __init__(self, name):
|
9 |
+
self.name = name
|
10 |
+
super().__init__()
|
11 |
+
|
12 |
+
@property
|
13 |
+
@abstractmethod
|
14 |
+
def vocab_size(self):
|
15 |
+
pass
|
16 |
+
|
17 |
+
@property
|
18 |
+
@abstractmethod
|
19 |
+
def vocab(self):
|
20 |
+
"""Dictionary from vocab text token to id token."""
|
21 |
+
pass
|
22 |
+
|
23 |
+
@property
|
24 |
+
@abstractmethod
|
25 |
+
def inv_vocab(self):
|
26 |
+
"""Dictionary from vocab id token to text token."""
|
27 |
+
pass
|
28 |
+
|
29 |
+
@abstractmethod
|
30 |
+
def tokenize(self, text):
|
31 |
+
pass
|
32 |
+
|
33 |
+
def detokenize(self, token_ids):
|
34 |
+
raise NotImplementedError('detokenizer is not implemented for {} '
|
35 |
+
'tokenizer'.format(self.name))
|
36 |
+
|
37 |
+
@property
|
38 |
+
def cls(self):
|
39 |
+
raise NotImplementedError('CLS is not provided for {} '
|
40 |
+
'tokenizer'.format(self.name))
|
41 |
+
|
42 |
+
@property
|
43 |
+
def sep(self):
|
44 |
+
raise NotImplementedError('SEP is not provided for {} '
|
45 |
+
'tokenizer'.format(self.name))
|
46 |
+
|
47 |
+
@property
|
48 |
+
def pad(self):
|
49 |
+
raise NotImplementedError('PAD is not provided for {} '
|
50 |
+
'tokenizer'.format(self.name))
|
51 |
+
|
52 |
+
@property
|
53 |
+
def eod(self):
|
54 |
+
raise NotImplementedError('EOD is not provided for {} '
|
55 |
+
'tokenizer'.format(self.name))
|
56 |
+
|
57 |
+
@property
|
58 |
+
def mask(self):
|
59 |
+
raise NotImplementedError('MASK is not provided for {} '
|
60 |
+
'tokenizer'.format(self.name))
|
61 |
+
|
62 |
+
|
63 |
+
class _SentencePieceTokenizer(AbstractTokenizer):
|
64 |
+
"""SentencePieceTokenizer-Megatron wrapper"""
|
65 |
+
|
66 |
+
def __init__(self, model_file, vocab_extra_ids=0):
|
67 |
+
name = 'SentencePieceTokenizer'
|
68 |
+
super().__init__(name)
|
69 |
+
|
70 |
+
import sentencepiece
|
71 |
+
self.tokenizer = sentencepiece.SentencePieceProcessor(model_file=model_file)
|
72 |
+
self._initalize(vocab_extra_ids)
|
73 |
+
|
74 |
+
def _populate_vocab(self):
|
75 |
+
self._vocab = {}
|
76 |
+
self._inv_vocab = {}
|
77 |
+
|
78 |
+
for i in range(len(self.tokenizer)):
|
79 |
+
t = self.tokenizer.id_to_piece(i)
|
80 |
+
self._inv_vocab[i] = t
|
81 |
+
self._vocab[t] = i
|
82 |
+
|
83 |
+
def _initalize(self, vocab_extra_ids):
|
84 |
+
self._populate_vocab()
|
85 |
+
self._special_tokens = {}
|
86 |
+
self._inv_special_tokens = {}
|
87 |
+
|
88 |
+
self._t5_tokens = []
|
89 |
+
|
90 |
+
def _add_special_token(t):
|
91 |
+
if t not in self._vocab:
|
92 |
+
next_id = len(self._vocab)
|
93 |
+
self._vocab[t] = next_id
|
94 |
+
self._inv_vocab[next_id] = t
|
95 |
+
self._special_tokens[t] = self._vocab[t]
|
96 |
+
self._inv_special_tokens[self._vocab[t]] = t
|
97 |
+
|
98 |
+
_add_special_token('<CLS>')
|
99 |
+
self._cls_id = self._vocab['<CLS>']
|
100 |
+
_add_special_token('<SEP>')
|
101 |
+
self._sep_id = self._vocab['<SEP>']
|
102 |
+
_add_special_token('<EOD>')
|
103 |
+
self._eod_id = self._vocab['<EOD>']
|
104 |
+
_add_special_token('<MASK>')
|
105 |
+
self._mask_id = self._vocab['<MASK>']
|
106 |
+
|
107 |
+
pad_id = self.tokenizer.pad_id()
|
108 |
+
try:
|
109 |
+
pad_token = self.tokenizer.id_to_piece(pad_id)
|
110 |
+
except IndexError:
|
111 |
+
pad_token = '<PAD>'
|
112 |
+
_add_special_token(pad_token)
|
113 |
+
self._pad_id = self._vocab[pad_token]
|
114 |
+
|
115 |
+
bos_id = self.tokenizer.bos_id()
|
116 |
+
try:
|
117 |
+
bos_token = self.tokenizer.id_to_piece(bos_id)
|
118 |
+
except IndexError:
|
119 |
+
bos_token = '<BOS>'
|
120 |
+
_add_special_token(bos_token)
|
121 |
+
self._bos_id = self._vocab[bos_token]
|
122 |
+
|
123 |
+
eos_id = self.tokenizer.eos_id()
|
124 |
+
try:
|
125 |
+
eos_token = self.tokenizer.id_to_piece(eos_id)
|
126 |
+
except IndexError:
|
127 |
+
eos_token = '<EOS>'
|
128 |
+
_add_special_token(eos_token)
|
129 |
+
self._eos_id = self._vocab[eos_token]
|
130 |
+
|
131 |
+
for i in range(vocab_extra_ids):
|
132 |
+
t = "<extra_id_{}>".format(i)
|
133 |
+
_add_special_token(t)
|
134 |
+
self._t5_tokens += [t]
|
135 |
+
|
136 |
+
@property
|
137 |
+
def vocab_size(self):
|
138 |
+
return len(self._vocab)
|
139 |
+
|
140 |
+
@property
|
141 |
+
def vocab(self):
|
142 |
+
return self._vocab
|
143 |
+
|
144 |
+
@property
|
145 |
+
def inv_vocab(self):
|
146 |
+
return self._inv_vocab
|
147 |
+
|
148 |
+
@property
|
149 |
+
def decoder(self):
|
150 |
+
return self._inv_vocab
|
151 |
+
|
152 |
+
@property
|
153 |
+
def encoder(self):
|
154 |
+
return self._vocab
|
155 |
+
|
156 |
+
# From:
|
157 |
+
# https://github.com/NVIDIA/NeMo/blob/c8fa217e811d60d11d014827c7f3845ff6c99ae7/nemo/collections/common/tokenizers/sentencepiece_tokenizer.py#L89
|
158 |
+
def tokenize(self, text):
|
159 |
+
ids = []
|
160 |
+
idx = 0
|
161 |
+
|
162 |
+
while 1:
|
163 |
+
indices = {}
|
164 |
+
for token in self._special_tokens:
|
165 |
+
try:
|
166 |
+
indices[token] = text[idx:].index(token)
|
167 |
+
except ValueError:
|
168 |
+
continue
|
169 |
+
if len(indices) == 0:
|
170 |
+
break
|
171 |
+
|
172 |
+
next_token = min(indices, key=indices.get)
|
173 |
+
next_idx = idx + indices[next_token]
|
174 |
+
|
175 |
+
ids.extend(self.tokenizer.encode_as_ids(text[idx:next_idx]))
|
176 |
+
ids.append(self._special_tokens[next_token])
|
177 |
+
idx = next_idx + len(next_token)
|
178 |
+
|
179 |
+
ids.extend(self.tokenizer.encode_as_ids(text[idx:]))
|
180 |
+
return ids
|
181 |
+
|
182 |
+
# From:
|
183 |
+
# https://github.com/NVIDIA/NeMo/blob/c8fa217e811d60d11d014827c7f3845ff6c99ae7/nemo/collections/common/tokenizers/sentencepiece_tokenizer.py#L125
|
184 |
+
def detokenize(self, ids):
|
185 |
+
text = ""
|
186 |
+
last_i = 0
|
187 |
+
|
188 |
+
for i, id in enumerate(ids):
|
189 |
+
if id in self._inv_special_tokens:
|
190 |
+
text += self.tokenizer.decode_ids(ids[last_i:i]) + " "
|
191 |
+
text += self._inv_special_tokens[id] + " "
|
192 |
+
last_i = i + 1
|
193 |
+
|
194 |
+
text += self.tokenizer.decode_ids(ids[last_i:])
|
195 |
+
return text
|
196 |
+
|
197 |
+
@property
|
198 |
+
def cls(self):
|
199 |
+
return self._cls_id
|
200 |
+
|
201 |
+
@property
|
202 |
+
def sep(self):
|
203 |
+
return self._sep_id
|
204 |
+
|
205 |
+
@property
|
206 |
+
def pad(self):
|
207 |
+
return self._pad_id
|
208 |
+
|
209 |
+
@property
|
210 |
+
def bos_token_id(self):
|
211 |
+
return self._bos_id
|
212 |
+
|
213 |
+
@property
|
214 |
+
def bos(self):
|
215 |
+
return self._bos_id
|
216 |
+
|
217 |
+
@property
|
218 |
+
def eod(self):
|
219 |
+
return self._eod_id
|
220 |
+
|
221 |
+
@property
|
222 |
+
def eos_token_id(self):
|
223 |
+
return self._eos_id
|
224 |
+
|
225 |
+
@property
|
226 |
+
def eos(self):
|
227 |
+
return self._eos_id
|
228 |
+
|
229 |
+
@property
|
230 |
+
def mask(self):
|
231 |
+
return self._mask_id
|
232 |
+
|
233 |
+
@property
|
234 |
+
def additional_special_tokens_ids(self):
|
235 |
+
return [self.vocab[k] for k in self._t5_tokens]
|
236 |
+
|
237 |
+
class _MMSentencePieceTokenizer(_SentencePieceTokenizer):
|
238 |
+
"""SentencePieceTokenizer-Megatron wrapper"""
|
239 |
+
|
240 |
+
def __init__(self, model_file, vocab_extra_ids=0):
|
241 |
+
super().__init__(model_file, vocab_extra_ids)
|
242 |
+
|
243 |
+
|
244 |
+
def _initalize(self, vocab_extra_ids):
|
245 |
+
self._populate_vocab()
|
246 |
+
self._special_tokens = {}
|
247 |
+
self._inv_special_tokens = {}
|
248 |
+
|
249 |
+
self._t5_tokens = []
|
250 |
+
|
251 |
+
def _add_special_token(t):
|
252 |
+
if t not in self._vocab:
|
253 |
+
next_id = len(self._vocab)
|
254 |
+
self._vocab[t] = next_id
|
255 |
+
self._inv_vocab[next_id] = t
|
256 |
+
self._special_tokens[t] = self._vocab[t]
|
257 |
+
self._inv_special_tokens[self._vocab[t]] = t
|
258 |
+
|
259 |
+
_add_special_token('<CLS>')
|
260 |
+
self._cls_id = self._vocab['<CLS>']
|
261 |
+
_add_special_token('<SEP>')
|
262 |
+
self._sep_id = self._vocab['<SEP>']
|
263 |
+
_add_special_token('<EOD>')
|
264 |
+
self._eod_id = self._vocab['<EOD>']
|
265 |
+
_add_special_token('<MASK>')
|
266 |
+
self._mask_id = self._vocab['<MASK>']
|
267 |
+
|
268 |
+
_add_special_token('<SOA>')
|
269 |
+
self._soa_id = self._vocab['<SOA>']
|
270 |
+
_add_special_token('<EOA>')
|
271 |
+
self._eoa_id = self._vocab['<EOA>']
|
272 |
+
_add_special_token('<SOV>')
|
273 |
+
self._sov_id = self._vocab['<SOV>']
|
274 |
+
_add_special_token('<EOV>')
|
275 |
+
self._eov_id = self._vocab['<EOV>']
|
276 |
+
_add_special_token('<SOI>')
|
277 |
+
self._soi_id = self._vocab['<SOI>']
|
278 |
+
_add_special_token('<EOI>')
|
279 |
+
self._eoi_id = self._vocab['<EOI>']
|
280 |
+
_add_special_token('<s_local>')
|
281 |
+
self._s_local_id = self._vocab['<s_local>']
|
282 |
+
_add_special_token('<e_local>')
|
283 |
+
self._e_local_id = self._vocab['<e_local>']
|
284 |
+
_add_special_token('<s_global>')
|
285 |
+
self._s_global_id = self._vocab['<s_global>']
|
286 |
+
_add_special_token('<e_global>')
|
287 |
+
self._e_global_id = self._vocab['<e_global>']
|
288 |
+
_add_special_token('<stage_1>')
|
289 |
+
self._stage_1_id = self._vocab['<stage_1>']
|
290 |
+
_add_special_token('<stage_2>')
|
291 |
+
self._stage_2_id = self._vocab['<stage_2>']
|
292 |
+
pad_id = self.tokenizer.pad_id()
|
293 |
+
try:
|
294 |
+
pad_token = self.tokenizer.id_to_piece(pad_id)
|
295 |
+
except IndexError:
|
296 |
+
pad_token = '<PAD>'
|
297 |
+
_add_special_token(pad_token)
|
298 |
+
self._pad_id = self._vocab[pad_token]
|
299 |
+
|
300 |
+
bos_id = self.tokenizer.bos_id()
|
301 |
+
try:
|
302 |
+
bos_token = self.tokenizer.id_to_piece(bos_id)
|
303 |
+
except IndexError:
|
304 |
+
bos_token = '<BOS>'
|
305 |
+
_add_special_token(bos_token)
|
306 |
+
self._bos_id = self._vocab[bos_token]
|
307 |
+
|
308 |
+
eos_id = self.tokenizer.eos_id()
|
309 |
+
try:
|
310 |
+
eos_token = self.tokenizer.id_to_piece(eos_id)
|
311 |
+
except IndexError:
|
312 |
+
eos_token = '<EOS>'
|
313 |
+
_add_special_token(eos_token)
|
314 |
+
self._eos_id = self._vocab[eos_token]
|
315 |
+
|
316 |
+
for i in range(vocab_extra_ids):
|
317 |
+
t = "<extra_id_{}>".format(i)
|
318 |
+
_add_special_token(t)
|
319 |
+
self._t5_tokens += [t]
|
320 |
+
|
321 |
+
@property
|
322 |
+
def soa(self):
|
323 |
+
return self._soa_id
|
324 |
+
|
325 |
+
@property
|
326 |
+
def eoa(self):
|
327 |
+
return self._eoa_id
|
328 |
+
|
329 |
+
@property
|
330 |
+
def sov(self):
|
331 |
+
return self._sov_id
|
332 |
+
|
333 |
+
@property
|
334 |
+
def eov(self):
|
335 |
+
return self._eov_id
|
336 |
+
|
337 |
+
@property
|
338 |
+
def soi(self):
|
339 |
+
return self._soi_id
|
340 |
+
|
341 |
+
@property
|
342 |
+
def eoi(self):
|
343 |
+
return self._eoi_id
|
344 |
+
|
345 |
+
@property
|
346 |
+
def s_local(self):
|
347 |
+
return self._s_local_id
|
348 |
+
|
349 |
+
@property
|
350 |
+
def e_local(self):
|
351 |
+
return self._e_local_id
|
352 |
+
|
353 |
+
@property
|
354 |
+
def s_global(self):
|
355 |
+
return self._s_global_id
|
356 |
+
|
357 |
+
@property
|
358 |
+
def e_global(self):
|
359 |
+
return self._e_global_id
|
360 |
+
|
361 |
+
@property
|
362 |
+
def stage_1(self):
|
363 |
+
return self._stage_1_id
|
364 |
+
|
365 |
+
@property
|
366 |
+
def stage_2(self):
|
367 |
+
return self._stage_2_id
|