Spaces:
Running
on
Zero
Running
on
Zero
new file: codecmanipulator.py
Browse files- codecmanipulator.py +203 -0
- mmtokenizer.py +367 -0
codecmanipulator.py
ADDED
|
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import numpy as np
|
| 3 |
+
import einops
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class CodecManipulator(object):
|
| 7 |
+
r"""
|
| 8 |
+
**mm tokenizer v0.1**
|
| 9 |
+
see codeclm/hf/mm_tokenizer_v0.1_hf/id2vocab.json
|
| 10 |
+
|
| 11 |
+
text tokens:
|
| 12 |
+
llama tokenizer 0~31999
|
| 13 |
+
|
| 14 |
+
special tokens: "32000": "<EOD>", "32001": "<SOA>", "32002": "<EOA>", "32003": "<SOI>", "32004": "<EOI>", "32005": "<SOV>", "32006": "<EOV>", "32007": "<s_local>", "32008": "<e_local>", "32009": "<s_global>", "32010": "<e_global>", "32011": "<semantic>", "32012": "<acoustic>", "32013": "<low_level>", "32014": "<dac_16k>", "32015": "<dac_44k>", "32016": "<xcodec>", "32017": "<placeholder>", "32018": "<semantic_mert>", "32019": "<semantic_hubert>", "32020": "<visual>", "32021": "<semanticodec>"
|
| 15 |
+
|
| 16 |
+
mm tokens:
|
| 17 |
+
dac_16k: 4 codebook, 1024 vocab, 32022 - 36117
|
| 18 |
+
dac_44k: 9 codebook, 1024 vocab, 36118 - 45333
|
| 19 |
+
xcodec: 12 codebook, 1024 vocab, 45334 - 57621
|
| 20 |
+
semantic mert: 1024, 57622 - 58645
|
| 21 |
+
semantic hubert: 512, 58646 - 59157
|
| 22 |
+
visual: 64000, not included in v0.1
|
| 23 |
+
semanticodec 100tps 16384: semantic=16384, 59158 - 75541, acoustic=8192, 75542 - 83733
|
| 24 |
+
"""
|
| 25 |
+
def __init__(self, codec_type, quantizer_begin=None, n_quantizer=None, teacher_forcing=False, data_feature="codec"):
|
| 26 |
+
self.codec_type = codec_type
|
| 27 |
+
self.mm_v0_2_cfg = {
|
| 28 |
+
"dac16k": {"codebook_size": 1024, "num_codebooks": 4, "global_offset": 32022, "sep": ["<dac_16k>"], "fps": 50},
|
| 29 |
+
"dac44k": {"codebook_size": 1024, "num_codebooks": 9, "global_offset": 36118, "sep": ["<dac_44k>"]},
|
| 30 |
+
"xcodec": {"codebook_size": 1024, "num_codebooks": 12, "global_offset": 45334, "sep": ["<xcodec>"], "fps": 50},
|
| 31 |
+
"mert": {"codebook_size": 1024, "global_offset": 57622, "sep": ["<semantic_mert>"]},
|
| 32 |
+
"hubert": {"codebook_size": 512, "global_offset": 58646, "sep": ["<semantic_hubert>"]},
|
| 33 |
+
"semantic/s": {"codebook_size": 16384, "num_codebooks": 1, "global_offset": 59158, "sep": ["<semanticodec>", "<semantic>"]},
|
| 34 |
+
"semantic/a": {"codebook_size": 8192, "num_codebooks": 1, "global_offset": 75542, "sep": ["<semanticodec>", "<acoustic>"]},
|
| 35 |
+
"semanticodec": {"codebook_size": [16384, 8192], "num_codebooks": 2, "global_offset": 59158, "sep": ["<semanticodec>"], "fps": 50},
|
| 36 |
+
"special_tokens": {
|
| 37 |
+
'<EOD>': 32000, '<SOA>': 32001, '<EOA>': 32002, '<SOI>': 32003, '<EOI>': 32004, '<SOV>': 32005, '<EOV>': 32006, '<s_local>': 32007, '<e_local>': 32008, '<s_global>': 32009, '<e_global>': 32010, '<semantic>': 32011, '<acoustic>': 32012, '<stage_1>': 32013, '<dac_16k>': 32014, '<dac_44k>': 32015, '<xcodec>': 32016, '<stage_2>': 32017, '<semantic_mert>': 32018, '<semantic_hubert>': 32019, '<visual>': 32020, '<semanticodec>': 32021
|
| 38 |
+
},
|
| 39 |
+
"metadata": {
|
| 40 |
+
"len": 83734,
|
| 41 |
+
"text_range": [0, 31999],
|
| 42 |
+
"special_range": [32000, 32021],
|
| 43 |
+
"mm_range": [32022, 83733]
|
| 44 |
+
},
|
| 45 |
+
"codec_range": {
|
| 46 |
+
"dac16k": [32022, 36117],
|
| 47 |
+
"dac44k": [36118, 45333],
|
| 48 |
+
"xcodec": [45334, 57621],
|
| 49 |
+
# "hifi16k": [53526, 57621],
|
| 50 |
+
"mert": [57622, 58645],
|
| 51 |
+
"hubert": [58646, 59157],
|
| 52 |
+
"semantic/s": [59158, 75541],
|
| 53 |
+
"semantic/a": [75542, 83733],
|
| 54 |
+
"semanticodec": [59158, 83733]
|
| 55 |
+
}
|
| 56 |
+
}
|
| 57 |
+
self.sep = self.mm_v0_2_cfg[self.codec_type]["sep"]
|
| 58 |
+
self.sep_ids = [self.mm_v0_2_cfg["special_tokens"][s] for s in self.sep]
|
| 59 |
+
self.codebook_size = self.mm_v0_2_cfg[self.codec_type]["codebook_size"]
|
| 60 |
+
self.num_codebooks = self.mm_v0_2_cfg[self.codec_type]["num_codebooks"]
|
| 61 |
+
self.global_offset = self.mm_v0_2_cfg[self.codec_type]["global_offset"]
|
| 62 |
+
self.fps = self.mm_v0_2_cfg[self.codec_type]["fps"] if "fps" in self.mm_v0_2_cfg[self.codec_type] else None
|
| 63 |
+
|
| 64 |
+
self.quantizer_begin = quantizer_begin if quantizer_begin is not None else 0
|
| 65 |
+
self.n_quantizer = n_quantizer if n_quantizer is not None else self.num_codebooks
|
| 66 |
+
self.teacher_forcing = teacher_forcing
|
| 67 |
+
self.data_feature = data_feature
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def offset_tok_ids(self, x, global_offset=0, codebook_size=2048, num_codebooks=4):
|
| 71 |
+
"""
|
| 72 |
+
x: (K, T)
|
| 73 |
+
"""
|
| 74 |
+
if isinstance(codebook_size, int):
|
| 75 |
+
assert x.max() < codebook_size, f"max(x)={x.max()}, codebook_size={codebook_size}"
|
| 76 |
+
elif isinstance(codebook_size, list):
|
| 77 |
+
for i, cs in enumerate(codebook_size):
|
| 78 |
+
assert x[i].max() < cs, f"max(x)={x[i].max()}, codebook_size={cs}, layer_id={i}"
|
| 79 |
+
else:
|
| 80 |
+
raise ValueError(f"codebook_size={codebook_size}")
|
| 81 |
+
assert x.min() >= 0, f"min(x)={x.min()}"
|
| 82 |
+
assert x.shape[0] == num_codebooks or x.shape[0] == self.n_quantizer, \
|
| 83 |
+
f"x.shape[0]={x.shape[0]}, num_codebooks={num_codebooks}, n_quantizer={self.n_quantizer}"
|
| 84 |
+
|
| 85 |
+
_x = x.copy()
|
| 86 |
+
_x = _x.astype(np.uint32)
|
| 87 |
+
cum_offset = 0
|
| 88 |
+
quantizer_begin = self.quantizer_begin
|
| 89 |
+
quantizer_end = quantizer_begin+self.n_quantizer
|
| 90 |
+
for k in range(self.quantizer_begin, quantizer_end): # k: quantizer_begin to quantizer_end - 1
|
| 91 |
+
if isinstance(codebook_size, int):
|
| 92 |
+
_x[k] += global_offset + k * codebook_size
|
| 93 |
+
elif isinstance(codebook_size, list):
|
| 94 |
+
_x[k] += global_offset + cum_offset
|
| 95 |
+
cum_offset += codebook_size[k]
|
| 96 |
+
else:
|
| 97 |
+
raise ValueError(f"codebook_size={codebook_size}")
|
| 98 |
+
return _x[quantizer_begin:quantizer_end]
|
| 99 |
+
|
| 100 |
+
def unoffset_tok_ids(self, x, global_offset=0, codebook_size=2048, num_codebooks=4):
|
| 101 |
+
"""
|
| 102 |
+
x: (K, T)
|
| 103 |
+
"""
|
| 104 |
+
if isinstance(codebook_size, int):
|
| 105 |
+
assert x.max() < global_offset + codebook_size * num_codebooks, f"max(x)={x.max()}, codebook_size={codebook_size}"
|
| 106 |
+
elif isinstance(codebook_size, list):
|
| 107 |
+
assert x.max() < global_offset + sum(codebook_size), f"max(x)={x.max()}, codebook_size={codebook_size}"
|
| 108 |
+
assert x.min() >= global_offset, f"min(x)={x.min()}, global_offset={global_offset}"
|
| 109 |
+
assert x.shape[0] == num_codebooks or x.shape[0] == self.n_quantizer, \
|
| 110 |
+
f"x.shape[0]={x.shape[0]}, num_codebooks={num_codebooks}, n_quantizer={self.n_quantizer}"
|
| 111 |
+
|
| 112 |
+
_x = x.copy()
|
| 113 |
+
_x = _x.astype(np.uint32)
|
| 114 |
+
cum_offset = 0
|
| 115 |
+
quantizer_begin = self.quantizer_begin
|
| 116 |
+
quantizer_end = quantizer_begin+self.n_quantizer
|
| 117 |
+
for k in range(quantizer_begin, quantizer_end):
|
| 118 |
+
if isinstance(codebook_size, int):
|
| 119 |
+
_x[k-quantizer_begin] -= global_offset + k * codebook_size
|
| 120 |
+
elif isinstance(codebook_size, list):
|
| 121 |
+
_x[k-quantizer_begin] -= global_offset + cum_offset
|
| 122 |
+
cum_offset += codebook_size[k]
|
| 123 |
+
else:
|
| 124 |
+
raise ValueError(f"codebook_size={codebook_size}")
|
| 125 |
+
return _x
|
| 126 |
+
|
| 127 |
+
def flatten(self, x):
|
| 128 |
+
if len(x.shape) > 2:
|
| 129 |
+
x = x.squeeze()
|
| 130 |
+
assert x.shape[0] == self.num_codebooks or x.shape[0] == self.n_quantizer, \
|
| 131 |
+
f"x.shape[0]={x.shape[0]}, num_codebooks={self.num_codebooks}, n_quantizer={self.n_quantizer}"
|
| 132 |
+
return einops.rearrange(x, 'K T -> (T K)')
|
| 133 |
+
|
| 134 |
+
def unflatten(self, x, n_quantizer=None):
|
| 135 |
+
x = x.squeeze()
|
| 136 |
+
assert len(x.shape) == 1
|
| 137 |
+
assert x.shape[0] % self.num_codebooks == 0 or x.shape[0] % self.n_quantizer == 0, \
|
| 138 |
+
f"x.shape[0]={x.shape[0]}, num_codebooks={self.num_codebooks}, n_quantizer={self.n_quantizer}"
|
| 139 |
+
if n_quantizer!=self.num_codebooks:
|
| 140 |
+
return einops.rearrange(x, '(T K) -> K T', K=n_quantizer)
|
| 141 |
+
return einops.rearrange(x, '(T K) -> K T', K=self.num_codebooks)
|
| 142 |
+
|
| 143 |
+
# def check_codec_type_from_path(self, path):
|
| 144 |
+
# if self.codec_type == "hifi16k":
|
| 145 |
+
# assert "academicodec_hifi_16k_320d_large_uni" in path
|
| 146 |
+
|
| 147 |
+
def get_codec_type_from_range(self, ids):
|
| 148 |
+
ids_range = [ids.min(), ids.max()]
|
| 149 |
+
codec_range = self.mm_v0_2_cfg["codec_range"]
|
| 150 |
+
for codec_type, r in codec_range.items():
|
| 151 |
+
if ids_range[0] >= r[0] and ids_range[1] <= r[1]:
|
| 152 |
+
return codec_type
|
| 153 |
+
raise ValueError(f"ids_range={ids_range}, codec_range={codec_range}")
|
| 154 |
+
|
| 155 |
+
def npy2ids(self, npy):
|
| 156 |
+
if isinstance(npy, str):
|
| 157 |
+
data = np.load(npy)
|
| 158 |
+
elif isinstance(npy, np.ndarray):
|
| 159 |
+
data = npy
|
| 160 |
+
else:
|
| 161 |
+
raise ValueError(f"not supported type: {type(npy)}")
|
| 162 |
+
# data = data.squeeze()
|
| 163 |
+
|
| 164 |
+
assert len(data.shape)==2, f'data shape: {data.shape} is not (n_codebook, seq_len)'
|
| 165 |
+
data = self.offset_tok_ids(
|
| 166 |
+
data,
|
| 167 |
+
global_offset=self.global_offset,
|
| 168 |
+
codebook_size=self.codebook_size,
|
| 169 |
+
num_codebooks=self.num_codebooks,
|
| 170 |
+
)
|
| 171 |
+
data = self.flatten(data)
|
| 172 |
+
codec_range = self.get_codec_type_from_range(data)
|
| 173 |
+
assert codec_range == self.codec_type, f"get_codec_type_from_range(data)={codec_range}, self.codec_type={self.codec_type}"
|
| 174 |
+
data = data.tolist()
|
| 175 |
+
return data
|
| 176 |
+
|
| 177 |
+
def ids2npy(self, token_ids):
|
| 178 |
+
# make sure token_ids starts with codebook 0
|
| 179 |
+
if isinstance(self.codebook_size, int):
|
| 180 |
+
codebook_0_range = (self.global_offset + self.quantizer_begin*self.codebook_size, self.global_offset + (self.quantizer_begin+1)*self.codebook_size)
|
| 181 |
+
elif isinstance(self.codebook_size, list):
|
| 182 |
+
codebook_0_range = (self.global_offset, self.global_offset + self.codebook_size[0])
|
| 183 |
+
assert token_ids[0] >= codebook_0_range[0] \
|
| 184 |
+
and token_ids[0] < codebook_0_range[1], f"token_ids[0]={token_ids[self.quantizer_begin]}, codebook_0_range={codebook_0_range}"
|
| 185 |
+
data = np.array(token_ids)
|
| 186 |
+
data = self.unflatten(data, n_quantizer=self.n_quantizer)
|
| 187 |
+
data = self.unoffset_tok_ids(
|
| 188 |
+
data,
|
| 189 |
+
global_offset=self.global_offset,
|
| 190 |
+
codebook_size=self.codebook_size,
|
| 191 |
+
num_codebooks=self.num_codebooks,
|
| 192 |
+
)
|
| 193 |
+
return data
|
| 194 |
+
|
| 195 |
+
def npy_to_json_str(self, npy_path):
|
| 196 |
+
data = self.npy2ids(npy_path)
|
| 197 |
+
return json.dumps({"text": data, "src": npy_path, "codec": self.codec_type})
|
| 198 |
+
|
| 199 |
+
def sep(self):
|
| 200 |
+
return ''.join(self.sep)
|
| 201 |
+
|
| 202 |
+
def sep_ids(self):
|
| 203 |
+
return self.sep_ids
|
mmtokenizer.py
ADDED
|
@@ -0,0 +1,367 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from abc import ABC
|
| 2 |
+
from abc import abstractmethod
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class AbstractTokenizer(ABC):
|
| 6 |
+
"""Abstract class for tokenizer."""
|
| 7 |
+
|
| 8 |
+
def __init__(self, name):
|
| 9 |
+
self.name = name
|
| 10 |
+
super().__init__()
|
| 11 |
+
|
| 12 |
+
@property
|
| 13 |
+
@abstractmethod
|
| 14 |
+
def vocab_size(self):
|
| 15 |
+
pass
|
| 16 |
+
|
| 17 |
+
@property
|
| 18 |
+
@abstractmethod
|
| 19 |
+
def vocab(self):
|
| 20 |
+
"""Dictionary from vocab text token to id token."""
|
| 21 |
+
pass
|
| 22 |
+
|
| 23 |
+
@property
|
| 24 |
+
@abstractmethod
|
| 25 |
+
def inv_vocab(self):
|
| 26 |
+
"""Dictionary from vocab id token to text token."""
|
| 27 |
+
pass
|
| 28 |
+
|
| 29 |
+
@abstractmethod
|
| 30 |
+
def tokenize(self, text):
|
| 31 |
+
pass
|
| 32 |
+
|
| 33 |
+
def detokenize(self, token_ids):
|
| 34 |
+
raise NotImplementedError('detokenizer is not implemented for {} '
|
| 35 |
+
'tokenizer'.format(self.name))
|
| 36 |
+
|
| 37 |
+
@property
|
| 38 |
+
def cls(self):
|
| 39 |
+
raise NotImplementedError('CLS is not provided for {} '
|
| 40 |
+
'tokenizer'.format(self.name))
|
| 41 |
+
|
| 42 |
+
@property
|
| 43 |
+
def sep(self):
|
| 44 |
+
raise NotImplementedError('SEP is not provided for {} '
|
| 45 |
+
'tokenizer'.format(self.name))
|
| 46 |
+
|
| 47 |
+
@property
|
| 48 |
+
def pad(self):
|
| 49 |
+
raise NotImplementedError('PAD is not provided for {} '
|
| 50 |
+
'tokenizer'.format(self.name))
|
| 51 |
+
|
| 52 |
+
@property
|
| 53 |
+
def eod(self):
|
| 54 |
+
raise NotImplementedError('EOD is not provided for {} '
|
| 55 |
+
'tokenizer'.format(self.name))
|
| 56 |
+
|
| 57 |
+
@property
|
| 58 |
+
def mask(self):
|
| 59 |
+
raise NotImplementedError('MASK is not provided for {} '
|
| 60 |
+
'tokenizer'.format(self.name))
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
class _SentencePieceTokenizer(AbstractTokenizer):
|
| 64 |
+
"""SentencePieceTokenizer-Megatron wrapper"""
|
| 65 |
+
|
| 66 |
+
def __init__(self, model_file, vocab_extra_ids=0):
|
| 67 |
+
name = 'SentencePieceTokenizer'
|
| 68 |
+
super().__init__(name)
|
| 69 |
+
|
| 70 |
+
import sentencepiece
|
| 71 |
+
self.tokenizer = sentencepiece.SentencePieceProcessor(model_file=model_file)
|
| 72 |
+
self._initalize(vocab_extra_ids)
|
| 73 |
+
|
| 74 |
+
def _populate_vocab(self):
|
| 75 |
+
self._vocab = {}
|
| 76 |
+
self._inv_vocab = {}
|
| 77 |
+
|
| 78 |
+
for i in range(len(self.tokenizer)):
|
| 79 |
+
t = self.tokenizer.id_to_piece(i)
|
| 80 |
+
self._inv_vocab[i] = t
|
| 81 |
+
self._vocab[t] = i
|
| 82 |
+
|
| 83 |
+
def _initalize(self, vocab_extra_ids):
|
| 84 |
+
self._populate_vocab()
|
| 85 |
+
self._special_tokens = {}
|
| 86 |
+
self._inv_special_tokens = {}
|
| 87 |
+
|
| 88 |
+
self._t5_tokens = []
|
| 89 |
+
|
| 90 |
+
def _add_special_token(t):
|
| 91 |
+
if t not in self._vocab:
|
| 92 |
+
next_id = len(self._vocab)
|
| 93 |
+
self._vocab[t] = next_id
|
| 94 |
+
self._inv_vocab[next_id] = t
|
| 95 |
+
self._special_tokens[t] = self._vocab[t]
|
| 96 |
+
self._inv_special_tokens[self._vocab[t]] = t
|
| 97 |
+
|
| 98 |
+
_add_special_token('<CLS>')
|
| 99 |
+
self._cls_id = self._vocab['<CLS>']
|
| 100 |
+
_add_special_token('<SEP>')
|
| 101 |
+
self._sep_id = self._vocab['<SEP>']
|
| 102 |
+
_add_special_token('<EOD>')
|
| 103 |
+
self._eod_id = self._vocab['<EOD>']
|
| 104 |
+
_add_special_token('<MASK>')
|
| 105 |
+
self._mask_id = self._vocab['<MASK>']
|
| 106 |
+
|
| 107 |
+
pad_id = self.tokenizer.pad_id()
|
| 108 |
+
try:
|
| 109 |
+
pad_token = self.tokenizer.id_to_piece(pad_id)
|
| 110 |
+
except IndexError:
|
| 111 |
+
pad_token = '<PAD>'
|
| 112 |
+
_add_special_token(pad_token)
|
| 113 |
+
self._pad_id = self._vocab[pad_token]
|
| 114 |
+
|
| 115 |
+
bos_id = self.tokenizer.bos_id()
|
| 116 |
+
try:
|
| 117 |
+
bos_token = self.tokenizer.id_to_piece(bos_id)
|
| 118 |
+
except IndexError:
|
| 119 |
+
bos_token = '<BOS>'
|
| 120 |
+
_add_special_token(bos_token)
|
| 121 |
+
self._bos_id = self._vocab[bos_token]
|
| 122 |
+
|
| 123 |
+
eos_id = self.tokenizer.eos_id()
|
| 124 |
+
try:
|
| 125 |
+
eos_token = self.tokenizer.id_to_piece(eos_id)
|
| 126 |
+
except IndexError:
|
| 127 |
+
eos_token = '<EOS>'
|
| 128 |
+
_add_special_token(eos_token)
|
| 129 |
+
self._eos_id = self._vocab[eos_token]
|
| 130 |
+
|
| 131 |
+
for i in range(vocab_extra_ids):
|
| 132 |
+
t = "<extra_id_{}>".format(i)
|
| 133 |
+
_add_special_token(t)
|
| 134 |
+
self._t5_tokens += [t]
|
| 135 |
+
|
| 136 |
+
@property
|
| 137 |
+
def vocab_size(self):
|
| 138 |
+
return len(self._vocab)
|
| 139 |
+
|
| 140 |
+
@property
|
| 141 |
+
def vocab(self):
|
| 142 |
+
return self._vocab
|
| 143 |
+
|
| 144 |
+
@property
|
| 145 |
+
def inv_vocab(self):
|
| 146 |
+
return self._inv_vocab
|
| 147 |
+
|
| 148 |
+
@property
|
| 149 |
+
def decoder(self):
|
| 150 |
+
return self._inv_vocab
|
| 151 |
+
|
| 152 |
+
@property
|
| 153 |
+
def encoder(self):
|
| 154 |
+
return self._vocab
|
| 155 |
+
|
| 156 |
+
# From:
|
| 157 |
+
# https://github.com/NVIDIA/NeMo/blob/c8fa217e811d60d11d014827c7f3845ff6c99ae7/nemo/collections/common/tokenizers/sentencepiece_tokenizer.py#L89
|
| 158 |
+
def tokenize(self, text):
|
| 159 |
+
ids = []
|
| 160 |
+
idx = 0
|
| 161 |
+
|
| 162 |
+
while 1:
|
| 163 |
+
indices = {}
|
| 164 |
+
for token in self._special_tokens:
|
| 165 |
+
try:
|
| 166 |
+
indices[token] = text[idx:].index(token)
|
| 167 |
+
except ValueError:
|
| 168 |
+
continue
|
| 169 |
+
if len(indices) == 0:
|
| 170 |
+
break
|
| 171 |
+
|
| 172 |
+
next_token = min(indices, key=indices.get)
|
| 173 |
+
next_idx = idx + indices[next_token]
|
| 174 |
+
|
| 175 |
+
ids.extend(self.tokenizer.encode_as_ids(text[idx:next_idx]))
|
| 176 |
+
ids.append(self._special_tokens[next_token])
|
| 177 |
+
idx = next_idx + len(next_token)
|
| 178 |
+
|
| 179 |
+
ids.extend(self.tokenizer.encode_as_ids(text[idx:]))
|
| 180 |
+
return ids
|
| 181 |
+
|
| 182 |
+
# From:
|
| 183 |
+
# https://github.com/NVIDIA/NeMo/blob/c8fa217e811d60d11d014827c7f3845ff6c99ae7/nemo/collections/common/tokenizers/sentencepiece_tokenizer.py#L125
|
| 184 |
+
def detokenize(self, ids):
|
| 185 |
+
text = ""
|
| 186 |
+
last_i = 0
|
| 187 |
+
|
| 188 |
+
for i, id in enumerate(ids):
|
| 189 |
+
if id in self._inv_special_tokens:
|
| 190 |
+
text += self.tokenizer.decode_ids(ids[last_i:i]) + " "
|
| 191 |
+
text += self._inv_special_tokens[id] + " "
|
| 192 |
+
last_i = i + 1
|
| 193 |
+
|
| 194 |
+
text += self.tokenizer.decode_ids(ids[last_i:])
|
| 195 |
+
return text
|
| 196 |
+
|
| 197 |
+
@property
|
| 198 |
+
def cls(self):
|
| 199 |
+
return self._cls_id
|
| 200 |
+
|
| 201 |
+
@property
|
| 202 |
+
def sep(self):
|
| 203 |
+
return self._sep_id
|
| 204 |
+
|
| 205 |
+
@property
|
| 206 |
+
def pad(self):
|
| 207 |
+
return self._pad_id
|
| 208 |
+
|
| 209 |
+
@property
|
| 210 |
+
def bos_token_id(self):
|
| 211 |
+
return self._bos_id
|
| 212 |
+
|
| 213 |
+
@property
|
| 214 |
+
def bos(self):
|
| 215 |
+
return self._bos_id
|
| 216 |
+
|
| 217 |
+
@property
|
| 218 |
+
def eod(self):
|
| 219 |
+
return self._eod_id
|
| 220 |
+
|
| 221 |
+
@property
|
| 222 |
+
def eos_token_id(self):
|
| 223 |
+
return self._eos_id
|
| 224 |
+
|
| 225 |
+
@property
|
| 226 |
+
def eos(self):
|
| 227 |
+
return self._eos_id
|
| 228 |
+
|
| 229 |
+
@property
|
| 230 |
+
def mask(self):
|
| 231 |
+
return self._mask_id
|
| 232 |
+
|
| 233 |
+
@property
|
| 234 |
+
def additional_special_tokens_ids(self):
|
| 235 |
+
return [self.vocab[k] for k in self._t5_tokens]
|
| 236 |
+
|
| 237 |
+
class _MMSentencePieceTokenizer(_SentencePieceTokenizer):
|
| 238 |
+
"""SentencePieceTokenizer-Megatron wrapper"""
|
| 239 |
+
|
| 240 |
+
def __init__(self, model_file, vocab_extra_ids=0):
|
| 241 |
+
super().__init__(model_file, vocab_extra_ids)
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
def _initalize(self, vocab_extra_ids):
|
| 245 |
+
self._populate_vocab()
|
| 246 |
+
self._special_tokens = {}
|
| 247 |
+
self._inv_special_tokens = {}
|
| 248 |
+
|
| 249 |
+
self._t5_tokens = []
|
| 250 |
+
|
| 251 |
+
def _add_special_token(t):
|
| 252 |
+
if t not in self._vocab:
|
| 253 |
+
next_id = len(self._vocab)
|
| 254 |
+
self._vocab[t] = next_id
|
| 255 |
+
self._inv_vocab[next_id] = t
|
| 256 |
+
self._special_tokens[t] = self._vocab[t]
|
| 257 |
+
self._inv_special_tokens[self._vocab[t]] = t
|
| 258 |
+
|
| 259 |
+
_add_special_token('<CLS>')
|
| 260 |
+
self._cls_id = self._vocab['<CLS>']
|
| 261 |
+
_add_special_token('<SEP>')
|
| 262 |
+
self._sep_id = self._vocab['<SEP>']
|
| 263 |
+
_add_special_token('<EOD>')
|
| 264 |
+
self._eod_id = self._vocab['<EOD>']
|
| 265 |
+
_add_special_token('<MASK>')
|
| 266 |
+
self._mask_id = self._vocab['<MASK>']
|
| 267 |
+
|
| 268 |
+
_add_special_token('<SOA>')
|
| 269 |
+
self._soa_id = self._vocab['<SOA>']
|
| 270 |
+
_add_special_token('<EOA>')
|
| 271 |
+
self._eoa_id = self._vocab['<EOA>']
|
| 272 |
+
_add_special_token('<SOV>')
|
| 273 |
+
self._sov_id = self._vocab['<SOV>']
|
| 274 |
+
_add_special_token('<EOV>')
|
| 275 |
+
self._eov_id = self._vocab['<EOV>']
|
| 276 |
+
_add_special_token('<SOI>')
|
| 277 |
+
self._soi_id = self._vocab['<SOI>']
|
| 278 |
+
_add_special_token('<EOI>')
|
| 279 |
+
self._eoi_id = self._vocab['<EOI>']
|
| 280 |
+
_add_special_token('<s_local>')
|
| 281 |
+
self._s_local_id = self._vocab['<s_local>']
|
| 282 |
+
_add_special_token('<e_local>')
|
| 283 |
+
self._e_local_id = self._vocab['<e_local>']
|
| 284 |
+
_add_special_token('<s_global>')
|
| 285 |
+
self._s_global_id = self._vocab['<s_global>']
|
| 286 |
+
_add_special_token('<e_global>')
|
| 287 |
+
self._e_global_id = self._vocab['<e_global>']
|
| 288 |
+
_add_special_token('<stage_1>')
|
| 289 |
+
self._stage_1_id = self._vocab['<stage_1>']
|
| 290 |
+
_add_special_token('<stage_2>')
|
| 291 |
+
self._stage_2_id = self._vocab['<stage_2>']
|
| 292 |
+
pad_id = self.tokenizer.pad_id()
|
| 293 |
+
try:
|
| 294 |
+
pad_token = self.tokenizer.id_to_piece(pad_id)
|
| 295 |
+
except IndexError:
|
| 296 |
+
pad_token = '<PAD>'
|
| 297 |
+
_add_special_token(pad_token)
|
| 298 |
+
self._pad_id = self._vocab[pad_token]
|
| 299 |
+
|
| 300 |
+
bos_id = self.tokenizer.bos_id()
|
| 301 |
+
try:
|
| 302 |
+
bos_token = self.tokenizer.id_to_piece(bos_id)
|
| 303 |
+
except IndexError:
|
| 304 |
+
bos_token = '<BOS>'
|
| 305 |
+
_add_special_token(bos_token)
|
| 306 |
+
self._bos_id = self._vocab[bos_token]
|
| 307 |
+
|
| 308 |
+
eos_id = self.tokenizer.eos_id()
|
| 309 |
+
try:
|
| 310 |
+
eos_token = self.tokenizer.id_to_piece(eos_id)
|
| 311 |
+
except IndexError:
|
| 312 |
+
eos_token = '<EOS>'
|
| 313 |
+
_add_special_token(eos_token)
|
| 314 |
+
self._eos_id = self._vocab[eos_token]
|
| 315 |
+
|
| 316 |
+
for i in range(vocab_extra_ids):
|
| 317 |
+
t = "<extra_id_{}>".format(i)
|
| 318 |
+
_add_special_token(t)
|
| 319 |
+
self._t5_tokens += [t]
|
| 320 |
+
|
| 321 |
+
@property
|
| 322 |
+
def soa(self):
|
| 323 |
+
return self._soa_id
|
| 324 |
+
|
| 325 |
+
@property
|
| 326 |
+
def eoa(self):
|
| 327 |
+
return self._eoa_id
|
| 328 |
+
|
| 329 |
+
@property
|
| 330 |
+
def sov(self):
|
| 331 |
+
return self._sov_id
|
| 332 |
+
|
| 333 |
+
@property
|
| 334 |
+
def eov(self):
|
| 335 |
+
return self._eov_id
|
| 336 |
+
|
| 337 |
+
@property
|
| 338 |
+
def soi(self):
|
| 339 |
+
return self._soi_id
|
| 340 |
+
|
| 341 |
+
@property
|
| 342 |
+
def eoi(self):
|
| 343 |
+
return self._eoi_id
|
| 344 |
+
|
| 345 |
+
@property
|
| 346 |
+
def s_local(self):
|
| 347 |
+
return self._s_local_id
|
| 348 |
+
|
| 349 |
+
@property
|
| 350 |
+
def e_local(self):
|
| 351 |
+
return self._e_local_id
|
| 352 |
+
|
| 353 |
+
@property
|
| 354 |
+
def s_global(self):
|
| 355 |
+
return self._s_global_id
|
| 356 |
+
|
| 357 |
+
@property
|
| 358 |
+
def e_global(self):
|
| 359 |
+
return self._e_global_id
|
| 360 |
+
|
| 361 |
+
@property
|
| 362 |
+
def stage_1(self):
|
| 363 |
+
return self._stage_1_id
|
| 364 |
+
|
| 365 |
+
@property
|
| 366 |
+
def stage_2(self):
|
| 367 |
+
return self._stage_2_id
|