Spaces:
Running
on
Zero
Running
on
Zero
Upload 13 files
Browse files- .gitattributes +1 -0
- .gitignore +162 -0
- assets/logo/yue.mp3 +3 -0
- assets/logo//347/231/275/345/272/225.png +0 -0
- assets/logo//351/200/217/346/230/216/345/272/225/351/273/221/347/272/277.png +0 -0
- assets/logo//351/273/221/345/272/225.png +0 -0
- inference/codecmanipulator.py +203 -0
- inference/infer.py +456 -0
- inference/mm_tokenizer_v0.2_hf/tokenizer.model +3 -0
- inference/mmtokenizer.py +367 -0
- inference/prompt_examples/genre.txt +1 -0
- inference/prompt_examples/lyrics.txt +39 -0
- requirements.txt +12 -0
- wav_top_200_tags.json +830 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
assets/logo/yue.mp3 filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
110 |
+
.pdm.toml
|
111 |
+
.pdm-python
|
112 |
+
.pdm-build/
|
113 |
+
|
114 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
115 |
+
__pypackages__/
|
116 |
+
|
117 |
+
# Celery stuff
|
118 |
+
celerybeat-schedule
|
119 |
+
celerybeat.pid
|
120 |
+
|
121 |
+
# SageMath parsed files
|
122 |
+
*.sage.py
|
123 |
+
|
124 |
+
# Environments
|
125 |
+
.env
|
126 |
+
.venv
|
127 |
+
env/
|
128 |
+
venv/
|
129 |
+
ENV/
|
130 |
+
env.bak/
|
131 |
+
venv.bak/
|
132 |
+
|
133 |
+
# Spyder project settings
|
134 |
+
.spyderproject
|
135 |
+
.spyproject
|
136 |
+
|
137 |
+
# Rope project settings
|
138 |
+
.ropeproject
|
139 |
+
|
140 |
+
# mkdocs documentation
|
141 |
+
/site
|
142 |
+
|
143 |
+
# mypy
|
144 |
+
.mypy_cache/
|
145 |
+
.dmypy.json
|
146 |
+
dmypy.json
|
147 |
+
|
148 |
+
# Pyre type checker
|
149 |
+
.pyre/
|
150 |
+
|
151 |
+
# pytype static type analyzer
|
152 |
+
.pytype/
|
153 |
+
|
154 |
+
# Cython debug symbols
|
155 |
+
cython_debug/
|
156 |
+
|
157 |
+
# PyCharm
|
158 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
159 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
160 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
161 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
162 |
+
#.idea/
|
assets/logo/yue.mp3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a50f1ef699f828afd7a421cd4fb02ab623875e4a6ff25a568c3f78cc707ed31a
|
3 |
+
size 3511901
|
assets/logo//347/231/275/345/272/225.png
ADDED
assets/logo//351/200/217/346/230/216/345/272/225/351/273/221/347/272/277.png
ADDED
assets/logo//351/273/221/345/272/225.png
ADDED
inference/codecmanipulator.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import numpy as np
|
3 |
+
import einops
|
4 |
+
|
5 |
+
|
6 |
+
class CodecManipulator(object):
|
7 |
+
r"""
|
8 |
+
**mm tokenizer v0.1**
|
9 |
+
see codeclm/hf/mm_tokenizer_v0.1_hf/id2vocab.json
|
10 |
+
|
11 |
+
text tokens:
|
12 |
+
llama tokenizer 0~31999
|
13 |
+
|
14 |
+
special tokens: "32000": "<EOD>", "32001": "<SOA>", "32002": "<EOA>", "32003": "<SOI>", "32004": "<EOI>", "32005": "<SOV>", "32006": "<EOV>", "32007": "<s_local>", "32008": "<e_local>", "32009": "<s_global>", "32010": "<e_global>", "32011": "<semantic>", "32012": "<acoustic>", "32013": "<low_level>", "32014": "<dac_16k>", "32015": "<dac_44k>", "32016": "<xcodec>", "32017": "<placeholder>", "32018": "<semantic_mert>", "32019": "<semantic_hubert>", "32020": "<visual>", "32021": "<semanticodec>"
|
15 |
+
|
16 |
+
mm tokens:
|
17 |
+
dac_16k: 4 codebook, 1024 vocab, 32022 - 36117
|
18 |
+
dac_44k: 9 codebook, 1024 vocab, 36118 - 45333
|
19 |
+
xcodec: 12 codebook, 1024 vocab, 45334 - 57621
|
20 |
+
semantic mert: 1024, 57622 - 58645
|
21 |
+
semantic hubert: 512, 58646 - 59157
|
22 |
+
visual: 64000, not included in v0.1
|
23 |
+
semanticodec 100tps 16384: semantic=16384, 59158 - 75541, acoustic=8192, 75542 - 83733
|
24 |
+
"""
|
25 |
+
def __init__(self, codec_type, quantizer_begin=None, n_quantizer=None, teacher_forcing=False, data_feature="codec"):
|
26 |
+
self.codec_type = codec_type
|
27 |
+
self.mm_v0_2_cfg = {
|
28 |
+
"dac16k": {"codebook_size": 1024, "num_codebooks": 4, "global_offset": 32022, "sep": ["<dac_16k>"], "fps": 50},
|
29 |
+
"dac44k": {"codebook_size": 1024, "num_codebooks": 9, "global_offset": 36118, "sep": ["<dac_44k>"]},
|
30 |
+
"xcodec": {"codebook_size": 1024, "num_codebooks": 12, "global_offset": 45334, "sep": ["<xcodec>"], "fps": 50},
|
31 |
+
"mert": {"codebook_size": 1024, "global_offset": 57622, "sep": ["<semantic_mert>"]},
|
32 |
+
"hubert": {"codebook_size": 512, "global_offset": 58646, "sep": ["<semantic_hubert>"]},
|
33 |
+
"semantic/s": {"codebook_size": 16384, "num_codebooks": 1, "global_offset": 59158, "sep": ["<semanticodec>", "<semantic>"]},
|
34 |
+
"semantic/a": {"codebook_size": 8192, "num_codebooks": 1, "global_offset": 75542, "sep": ["<semanticodec>", "<acoustic>"]},
|
35 |
+
"semanticodec": {"codebook_size": [16384, 8192], "num_codebooks": 2, "global_offset": 59158, "sep": ["<semanticodec>"], "fps": 50},
|
36 |
+
"special_tokens": {
|
37 |
+
'<EOD>': 32000, '<SOA>': 32001, '<EOA>': 32002, '<SOI>': 32003, '<EOI>': 32004, '<SOV>': 32005, '<EOV>': 32006, '<s_local>': 32007, '<e_local>': 32008, '<s_global>': 32009, '<e_global>': 32010, '<semantic>': 32011, '<acoustic>': 32012, '<stage_1>': 32013, '<dac_16k>': 32014, '<dac_44k>': 32015, '<xcodec>': 32016, '<stage_2>': 32017, '<semantic_mert>': 32018, '<semantic_hubert>': 32019, '<visual>': 32020, '<semanticodec>': 32021
|
38 |
+
},
|
39 |
+
"metadata": {
|
40 |
+
"len": 83734,
|
41 |
+
"text_range": [0, 31999],
|
42 |
+
"special_range": [32000, 32021],
|
43 |
+
"mm_range": [32022, 83733]
|
44 |
+
},
|
45 |
+
"codec_range": {
|
46 |
+
"dac16k": [32022, 36117],
|
47 |
+
"dac44k": [36118, 45333],
|
48 |
+
"xcodec": [45334, 57621],
|
49 |
+
# "hifi16k": [53526, 57621],
|
50 |
+
"mert": [57622, 58645],
|
51 |
+
"hubert": [58646, 59157],
|
52 |
+
"semantic/s": [59158, 75541],
|
53 |
+
"semantic/a": [75542, 83733],
|
54 |
+
"semanticodec": [59158, 83733]
|
55 |
+
}
|
56 |
+
}
|
57 |
+
self.sep = self.mm_v0_2_cfg[self.codec_type]["sep"]
|
58 |
+
self.sep_ids = [self.mm_v0_2_cfg["special_tokens"][s] for s in self.sep]
|
59 |
+
self.codebook_size = self.mm_v0_2_cfg[self.codec_type]["codebook_size"]
|
60 |
+
self.num_codebooks = self.mm_v0_2_cfg[self.codec_type]["num_codebooks"]
|
61 |
+
self.global_offset = self.mm_v0_2_cfg[self.codec_type]["global_offset"]
|
62 |
+
self.fps = self.mm_v0_2_cfg[self.codec_type]["fps"] if "fps" in self.mm_v0_2_cfg[self.codec_type] else None
|
63 |
+
|
64 |
+
self.quantizer_begin = quantizer_begin if quantizer_begin is not None else 0
|
65 |
+
self.n_quantizer = n_quantizer if n_quantizer is not None else self.num_codebooks
|
66 |
+
self.teacher_forcing = teacher_forcing
|
67 |
+
self.data_feature = data_feature
|
68 |
+
|
69 |
+
|
70 |
+
def offset_tok_ids(self, x, global_offset=0, codebook_size=2048, num_codebooks=4):
|
71 |
+
"""
|
72 |
+
x: (K, T)
|
73 |
+
"""
|
74 |
+
if isinstance(codebook_size, int):
|
75 |
+
assert x.max() < codebook_size, f"max(x)={x.max()}, codebook_size={codebook_size}"
|
76 |
+
elif isinstance(codebook_size, list):
|
77 |
+
for i, cs in enumerate(codebook_size):
|
78 |
+
assert x[i].max() < cs, f"max(x)={x[i].max()}, codebook_size={cs}, layer_id={i}"
|
79 |
+
else:
|
80 |
+
raise ValueError(f"codebook_size={codebook_size}")
|
81 |
+
assert x.min() >= 0, f"min(x)={x.min()}"
|
82 |
+
assert x.shape[0] == num_codebooks or x.shape[0] == self.n_quantizer, \
|
83 |
+
f"x.shape[0]={x.shape[0]}, num_codebooks={num_codebooks}, n_quantizer={self.n_quantizer}"
|
84 |
+
|
85 |
+
_x = x.copy()
|
86 |
+
_x = _x.astype(np.uint32)
|
87 |
+
cum_offset = 0
|
88 |
+
quantizer_begin = self.quantizer_begin
|
89 |
+
quantizer_end = quantizer_begin+self.n_quantizer
|
90 |
+
for k in range(self.quantizer_begin, quantizer_end): # k: quantizer_begin to quantizer_end - 1
|
91 |
+
if isinstance(codebook_size, int):
|
92 |
+
_x[k] += global_offset + k * codebook_size
|
93 |
+
elif isinstance(codebook_size, list):
|
94 |
+
_x[k] += global_offset + cum_offset
|
95 |
+
cum_offset += codebook_size[k]
|
96 |
+
else:
|
97 |
+
raise ValueError(f"codebook_size={codebook_size}")
|
98 |
+
return _x[quantizer_begin:quantizer_end]
|
99 |
+
|
100 |
+
def unoffset_tok_ids(self, x, global_offset=0, codebook_size=2048, num_codebooks=4):
|
101 |
+
"""
|
102 |
+
x: (K, T)
|
103 |
+
"""
|
104 |
+
if isinstance(codebook_size, int):
|
105 |
+
assert x.max() < global_offset + codebook_size * num_codebooks, f"max(x)={x.max()}, codebook_size={codebook_size}"
|
106 |
+
elif isinstance(codebook_size, list):
|
107 |
+
assert x.max() < global_offset + sum(codebook_size), f"max(x)={x.max()}, codebook_size={codebook_size}"
|
108 |
+
assert x.min() >= global_offset, f"min(x)={x.min()}, global_offset={global_offset}"
|
109 |
+
assert x.shape[0] == num_codebooks or x.shape[0] == self.n_quantizer, \
|
110 |
+
f"x.shape[0]={x.shape[0]}, num_codebooks={num_codebooks}, n_quantizer={self.n_quantizer}"
|
111 |
+
|
112 |
+
_x = x.copy()
|
113 |
+
_x = _x.astype(np.uint32)
|
114 |
+
cum_offset = 0
|
115 |
+
quantizer_begin = self.quantizer_begin
|
116 |
+
quantizer_end = quantizer_begin+self.n_quantizer
|
117 |
+
for k in range(quantizer_begin, quantizer_end):
|
118 |
+
if isinstance(codebook_size, int):
|
119 |
+
_x[k-quantizer_begin] -= global_offset + k * codebook_size
|
120 |
+
elif isinstance(codebook_size, list):
|
121 |
+
_x[k-quantizer_begin] -= global_offset + cum_offset
|
122 |
+
cum_offset += codebook_size[k]
|
123 |
+
else:
|
124 |
+
raise ValueError(f"codebook_size={codebook_size}")
|
125 |
+
return _x
|
126 |
+
|
127 |
+
def flatten(self, x):
|
128 |
+
if len(x.shape) > 2:
|
129 |
+
x = x.squeeze()
|
130 |
+
assert x.shape[0] == self.num_codebooks or x.shape[0] == self.n_quantizer, \
|
131 |
+
f"x.shape[0]={x.shape[0]}, num_codebooks={self.num_codebooks}, n_quantizer={self.n_quantizer}"
|
132 |
+
return einops.rearrange(x, 'K T -> (T K)')
|
133 |
+
|
134 |
+
def unflatten(self, x, n_quantizer=None):
|
135 |
+
x = x.squeeze()
|
136 |
+
assert len(x.shape) == 1
|
137 |
+
assert x.shape[0] % self.num_codebooks == 0 or x.shape[0] % self.n_quantizer == 0, \
|
138 |
+
f"x.shape[0]={x.shape[0]}, num_codebooks={self.num_codebooks}, n_quantizer={self.n_quantizer}"
|
139 |
+
if n_quantizer!=self.num_codebooks:
|
140 |
+
return einops.rearrange(x, '(T K) -> K T', K=n_quantizer)
|
141 |
+
return einops.rearrange(x, '(T K) -> K T', K=self.num_codebooks)
|
142 |
+
|
143 |
+
# def check_codec_type_from_path(self, path):
|
144 |
+
# if self.codec_type == "hifi16k":
|
145 |
+
# assert "academicodec_hifi_16k_320d_large_uni" in path
|
146 |
+
|
147 |
+
def get_codec_type_from_range(self, ids):
|
148 |
+
ids_range = [ids.min(), ids.max()]
|
149 |
+
codec_range = self.mm_v0_2_cfg["codec_range"]
|
150 |
+
for codec_type, r in codec_range.items():
|
151 |
+
if ids_range[0] >= r[0] and ids_range[1] <= r[1]:
|
152 |
+
return codec_type
|
153 |
+
raise ValueError(f"ids_range={ids_range}, codec_range={codec_range}")
|
154 |
+
|
155 |
+
def npy2ids(self, npy):
|
156 |
+
if isinstance(npy, str):
|
157 |
+
data = np.load(npy)
|
158 |
+
elif isinstance(npy, np.ndarray):
|
159 |
+
data = npy
|
160 |
+
else:
|
161 |
+
raise ValueError(f"not supported type: {type(npy)}")
|
162 |
+
# data = data.squeeze()
|
163 |
+
|
164 |
+
assert len(data.shape)==2, f'data shape: {data.shape} is not (n_codebook, seq_len)'
|
165 |
+
data = self.offset_tok_ids(
|
166 |
+
data,
|
167 |
+
global_offset=self.global_offset,
|
168 |
+
codebook_size=self.codebook_size,
|
169 |
+
num_codebooks=self.num_codebooks,
|
170 |
+
)
|
171 |
+
data = self.flatten(data)
|
172 |
+
codec_range = self.get_codec_type_from_range(data)
|
173 |
+
assert codec_range == self.codec_type, f"get_codec_type_from_range(data)={codec_range}, self.codec_type={self.codec_type}"
|
174 |
+
data = data.tolist()
|
175 |
+
return data
|
176 |
+
|
177 |
+
def ids2npy(self, token_ids):
|
178 |
+
# make sure token_ids starts with codebook 0
|
179 |
+
if isinstance(self.codebook_size, int):
|
180 |
+
codebook_0_range = (self.global_offset + self.quantizer_begin*self.codebook_size, self.global_offset + (self.quantizer_begin+1)*self.codebook_size)
|
181 |
+
elif isinstance(self.codebook_size, list):
|
182 |
+
codebook_0_range = (self.global_offset, self.global_offset + self.codebook_size[0])
|
183 |
+
assert token_ids[0] >= codebook_0_range[0] \
|
184 |
+
and token_ids[0] < codebook_0_range[1], f"token_ids[0]={token_ids[self.quantizer_begin]}, codebook_0_range={codebook_0_range}"
|
185 |
+
data = np.array(token_ids)
|
186 |
+
data = self.unflatten(data, n_quantizer=self.n_quantizer)
|
187 |
+
data = self.unoffset_tok_ids(
|
188 |
+
data,
|
189 |
+
global_offset=self.global_offset,
|
190 |
+
codebook_size=self.codebook_size,
|
191 |
+
num_codebooks=self.num_codebooks,
|
192 |
+
)
|
193 |
+
return data
|
194 |
+
|
195 |
+
def npy_to_json_str(self, npy_path):
|
196 |
+
data = self.npy2ids(npy_path)
|
197 |
+
return json.dumps({"text": data, "src": npy_path, "codec": self.codec_type})
|
198 |
+
|
199 |
+
def sep(self):
|
200 |
+
return ''.join(self.sep)
|
201 |
+
|
202 |
+
def sep_ids(self):
|
203 |
+
return self.sep_ids
|
inference/infer.py
ADDED
@@ -0,0 +1,456 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer'))
|
4 |
+
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'xcodec_mini_infer', 'descriptaudiocodec'))
|
5 |
+
import argparse
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
import json
|
9 |
+
from omegaconf import OmegaConf
|
10 |
+
import torchaudio
|
11 |
+
from torchaudio.transforms import Resample
|
12 |
+
import soundfile as sf
|
13 |
+
|
14 |
+
import uuid
|
15 |
+
from tqdm import tqdm
|
16 |
+
from einops import rearrange
|
17 |
+
from codecmanipulator import CodecManipulator
|
18 |
+
from mmtokenizer import _MMSentencePieceTokenizer
|
19 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, LogitsProcessor, LogitsProcessorList
|
20 |
+
import glob
|
21 |
+
import time
|
22 |
+
import copy
|
23 |
+
from collections import Counter
|
24 |
+
from models.soundstream_hubert_new import SoundStream
|
25 |
+
from vocoder import build_codec_model, process_audio
|
26 |
+
from post_process_audio import replace_low_freq_with_energy_matched
|
27 |
+
import re
|
28 |
+
|
29 |
+
|
30 |
+
parser = argparse.ArgumentParser()
|
31 |
+
# Model Configuration:
|
32 |
+
parser.add_argument("--stage1_model", type=str, default="m-a-p/YuE-s1-7B-anneal-en-cot", help="The model checkpoint path or identifier for the Stage 1 model.")
|
33 |
+
parser.add_argument("--stage2_model", type=str, default="m-a-p/YuE-s2-1B-general", help="The model checkpoint path or identifier for the Stage 2 model.")
|
34 |
+
parser.add_argument("--max_new_tokens", type=int, default=3000, help="The maximum number of new tokens to generate in one pass during text generation.")
|
35 |
+
parser.add_argument("--run_n_segments", type=int, default=2, help="The number of segments to process during the generation.")
|
36 |
+
parser.add_argument("--stage2_batch_size", type=int, default=4, help="The batch size used in Stage 2 inference.")
|
37 |
+
# Prompt
|
38 |
+
parser.add_argument("--genre_txt", type=str, required=True, help="The file path to a text file containing genre tags that describe the musical style or characteristics (e.g., instrumental, genre, mood, vocal timbre, vocal gender). This is used as part of the generation prompt.")
|
39 |
+
parser.add_argument("--lyrics_txt", type=str, required=True, help="The file path to a text file containing the lyrics for the music generation. These lyrics will be processed and split into structured segments to guide the generation process.")
|
40 |
+
parser.add_argument("--use_audio_prompt", action="store_true", help="If set, the model will use an audio file as a prompt during generation. The audio file should be specified using --audio_prompt_path.")
|
41 |
+
parser.add_argument("--audio_prompt_path", type=str, default="", help="The file path to an audio file to use as a reference prompt when --use_audio_prompt is enabled.")
|
42 |
+
parser.add_argument("--prompt_start_time", type=float, default=0.0, help="The start time in seconds to extract the audio prompt from the given audio file.")
|
43 |
+
parser.add_argument("--prompt_end_time", type=float, default=30.0, help="The end time in seconds to extract the audio prompt from the given audio file.")
|
44 |
+
# Output
|
45 |
+
parser.add_argument("--output_dir", type=str, default="./output", help="The directory where generated outputs will be saved.")
|
46 |
+
parser.add_argument("--keep_intermediate", action="store_true", help="If set, intermediate outputs will be saved during processing.")
|
47 |
+
parser.add_argument("--disable_offload_model", action="store_true", help="If set, the model will not be offloaded from the GPU to CPU after Stage 1 inference.")
|
48 |
+
parser.add_argument("--cuda_idx", type=int, default=0)
|
49 |
+
# Config for xcodec and upsampler
|
50 |
+
parser.add_argument('--basic_model_config', default='./xcodec_mini_infer/final_ckpt/config.yaml', help='YAML files for xcodec configurations.')
|
51 |
+
parser.add_argument('--resume_path', default='./xcodec_mini_infer/final_ckpt/ckpt_00360000.pth', help='Path to the xcodec checkpoint.')
|
52 |
+
parser.add_argument('--config_path', type=str, default='./xcodec_mini_infer/decoders/config.yaml', help='Path to Vocos config file.')
|
53 |
+
parser.add_argument('--vocal_decoder_path', type=str, default='./xcodec_mini_infer/decoders/decoder_131000.pth', help='Path to Vocos decoder weights.')
|
54 |
+
parser.add_argument('--inst_decoder_path', type=str, default='./xcodec_mini_infer/decoders/decoder_151000.pth', help='Path to Vocos decoder weights.')
|
55 |
+
parser.add_argument('-r', '--rescale', action='store_true', help='Rescale output to avoid clipping.')
|
56 |
+
|
57 |
+
|
58 |
+
args = parser.parse_args()
|
59 |
+
if args.use_audio_prompt and not args.audio_prompt_path:
|
60 |
+
raise FileNotFoundError("Please offer audio prompt filepath using '--audio_prompt_path', when you enable 'use_audio_prompt'!")
|
61 |
+
stage1_model = args.stage1_model
|
62 |
+
stage2_model = args.stage2_model
|
63 |
+
cuda_idx = args.cuda_idx
|
64 |
+
max_new_tokens = args.max_new_tokens
|
65 |
+
stage1_output_dir = os.path.join(args.output_dir, f"stage1")
|
66 |
+
stage2_output_dir = stage1_output_dir.replace('stage1', 'stage2')
|
67 |
+
os.makedirs(stage1_output_dir, exist_ok=True)
|
68 |
+
os.makedirs(stage2_output_dir, exist_ok=True)
|
69 |
+
|
70 |
+
# load tokenizer and model
|
71 |
+
device = torch.device(f"cuda:{cuda_idx}" if torch.cuda.is_available() else "cpu")
|
72 |
+
mmtokenizer = _MMSentencePieceTokenizer("./mm_tokenizer_v0.2_hf/tokenizer.model")
|
73 |
+
model = AutoModelForCausalLM.from_pretrained(
|
74 |
+
stage1_model,
|
75 |
+
torch_dtype=torch.bfloat16,
|
76 |
+
attn_implementation="flash_attention_2", # To enable flashattn, you have to install flash-attn
|
77 |
+
)
|
78 |
+
# to device, if gpu is available
|
79 |
+
model.to(device)
|
80 |
+
model.eval()
|
81 |
+
|
82 |
+
codectool = CodecManipulator("xcodec", 0, 1)
|
83 |
+
codectool_stage2 = CodecManipulator("xcodec", 0, 8)
|
84 |
+
model_config = OmegaConf.load(args.basic_model_config)
|
85 |
+
codec_model = eval(model_config.generator.name)(**model_config.generator.config).to(device)
|
86 |
+
parameter_dict = torch.load(args.resume_path, map_location='cpu')
|
87 |
+
codec_model.load_state_dict(parameter_dict['codec_model'])
|
88 |
+
codec_model.to(device)
|
89 |
+
codec_model.eval()
|
90 |
+
|
91 |
+
class BlockTokenRangeProcessor(LogitsProcessor):
|
92 |
+
def __init__(self, start_id, end_id):
|
93 |
+
self.blocked_token_ids = list(range(start_id, end_id))
|
94 |
+
|
95 |
+
def __call__(self, input_ids, scores):
|
96 |
+
scores[:, self.blocked_token_ids] = -float("inf")
|
97 |
+
return scores
|
98 |
+
|
99 |
+
def load_audio_mono(filepath, sampling_rate=16000):
|
100 |
+
audio, sr = torchaudio.load(filepath)
|
101 |
+
# Convert to mono
|
102 |
+
audio = torch.mean(audio, dim=0, keepdim=True)
|
103 |
+
# Resample if needed
|
104 |
+
if sr != sampling_rate:
|
105 |
+
resampler = Resample(orig_freq=sr, new_freq=sampling_rate)
|
106 |
+
audio = resampler(audio)
|
107 |
+
return audio
|
108 |
+
|
109 |
+
def split_lyrics(lyrics):
|
110 |
+
pattern = r"\[(\w+)\](.*?)\n(?=\[|\Z)"
|
111 |
+
segments = re.findall(pattern, lyrics, re.DOTALL)
|
112 |
+
structured_lyrics = [f"[{seg[0]}]\n{seg[1].strip()}\n\n" for seg in segments]
|
113 |
+
return structured_lyrics
|
114 |
+
|
115 |
+
# Call the function and print the result
|
116 |
+
stage1_output_set = []
|
117 |
+
# Tips:
|
118 |
+
# genre tags support instrumental,genre,mood,vocal timbr and vocal gender
|
119 |
+
# all kinds of tags are needed
|
120 |
+
with open(args.genre_txt) as f:
|
121 |
+
genres = f.read().strip()
|
122 |
+
with open(args.lyrics_txt) as f:
|
123 |
+
lyrics = split_lyrics(f.read())
|
124 |
+
# intruction
|
125 |
+
full_lyrics = "\n".join(lyrics)
|
126 |
+
prompt_texts = [f"Generate music from the given lyrics segment by segment.\n[Genre] {genres}\n{full_lyrics}"]
|
127 |
+
prompt_texts += lyrics
|
128 |
+
|
129 |
+
|
130 |
+
random_id = uuid.uuid4()
|
131 |
+
output_seq = None
|
132 |
+
# Here is suggested decoding config
|
133 |
+
top_p = 0.93
|
134 |
+
temperature = 1.0
|
135 |
+
repetition_penalty = 1.2
|
136 |
+
# special tokens
|
137 |
+
start_of_segment = mmtokenizer.tokenize('[start_of_segment]')
|
138 |
+
end_of_segment = mmtokenizer.tokenize('[end_of_segment]')
|
139 |
+
# Format text prompt
|
140 |
+
run_n_segments = min(args.run_n_segments+1, len(lyrics))
|
141 |
+
for i, p in enumerate(tqdm(prompt_texts[:run_n_segments])):
|
142 |
+
section_text = p.replace('[start_of_segment]', '').replace('[end_of_segment]', '')
|
143 |
+
guidance_scale = 1.5 if i <=1 else 1.2
|
144 |
+
if i==0:
|
145 |
+
continue
|
146 |
+
if i==1:
|
147 |
+
if args.use_audio_prompt:
|
148 |
+
audio_prompt = load_audio_mono(args.audio_prompt_path)
|
149 |
+
audio_prompt.unsqueeze_(0)
|
150 |
+
with torch.no_grad():
|
151 |
+
raw_codes = codec_model.encode(audio_prompt.to(device), target_bw=0.5)
|
152 |
+
raw_codes = raw_codes.transpose(0, 1)
|
153 |
+
raw_codes = raw_codes.cpu().numpy().astype(np.int16)
|
154 |
+
# Format audio prompt
|
155 |
+
code_ids = codectool.npy2ids(raw_codes[0])
|
156 |
+
audio_prompt_codec = code_ids[int(args.prompt_start_time *50): int(args.prompt_end_time *50)] # 50 is tps of xcodec
|
157 |
+
audio_prompt_codec_ids = [mmtokenizer.soa] + codectool.sep_ids + audio_prompt_codec + [mmtokenizer.eoa]
|
158 |
+
sentence_ids = mmtokenizer.tokenize("[start_of_reference]") + audio_prompt_codec_ids + mmtokenizer.tokenize("[end_of_reference]")
|
159 |
+
head_id = mmtokenizer.tokenize(prompt_texts[0]) + sentence_ids
|
160 |
+
else:
|
161 |
+
head_id = mmtokenizer.tokenize(prompt_texts[0])
|
162 |
+
prompt_ids = head_id + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
|
163 |
+
else:
|
164 |
+
prompt_ids = end_of_segment + start_of_segment + mmtokenizer.tokenize(section_text) + [mmtokenizer.soa] + codectool.sep_ids
|
165 |
+
|
166 |
+
prompt_ids = torch.as_tensor(prompt_ids).unsqueeze(0).to(device)
|
167 |
+
input_ids = torch.cat([raw_output, prompt_ids], dim=1) if i > 1 else prompt_ids
|
168 |
+
# Use window slicing in case output sequence exceeds the context of model
|
169 |
+
max_context = 16384-max_new_tokens-1
|
170 |
+
if input_ids.shape[-1] > max_context:
|
171 |
+
print(f'Section {i}: output length {input_ids.shape[-1]} exceeding context length {max_context}, now using the last {max_context} tokens.')
|
172 |
+
input_ids = input_ids[:, -(max_context):]
|
173 |
+
with torch.no_grad():
|
174 |
+
output_seq = model.generate(
|
175 |
+
input_ids=input_ids,
|
176 |
+
max_new_tokens=max_new_tokens,
|
177 |
+
min_new_tokens=100,
|
178 |
+
do_sample=True,
|
179 |
+
top_p=top_p,
|
180 |
+
temperature=temperature,
|
181 |
+
repetition_penalty=repetition_penalty,
|
182 |
+
eos_token_id=mmtokenizer.eoa,
|
183 |
+
pad_token_id=mmtokenizer.eoa,
|
184 |
+
logits_processor=LogitsProcessorList([BlockTokenRangeProcessor(0, 32002), BlockTokenRangeProcessor(32016, 32016)]),
|
185 |
+
guidance_scale=guidance_scale,
|
186 |
+
)
|
187 |
+
if output_seq[0][-1].item() != mmtokenizer.eoa:
|
188 |
+
tensor_eoa = torch.as_tensor([[mmtokenizer.eoa]]).to(model.device)
|
189 |
+
output_seq = torch.cat((output_seq, tensor_eoa), dim=1)
|
190 |
+
if i > 1:
|
191 |
+
raw_output = torch.cat([raw_output, prompt_ids, output_seq[:, input_ids.shape[-1]:]], dim=1)
|
192 |
+
else:
|
193 |
+
raw_output = output_seq
|
194 |
+
|
195 |
+
# save raw output and check sanity
|
196 |
+
ids = raw_output[0].cpu().numpy()
|
197 |
+
soa_idx = np.where(ids == mmtokenizer.soa)[0].tolist()
|
198 |
+
eoa_idx = np.where(ids == mmtokenizer.eoa)[0].tolist()
|
199 |
+
if len(soa_idx)!=len(eoa_idx):
|
200 |
+
raise ValueError(f'invalid pairs of soa and eoa, Num of soa: {len(soa_idx)}, Num of eoa: {len(eoa_idx)}')
|
201 |
+
|
202 |
+
vocals = []
|
203 |
+
instrumentals = []
|
204 |
+
range_begin = 1 if args.use_audio_prompt else 0
|
205 |
+
for i in range(range_begin, len(soa_idx)):
|
206 |
+
codec_ids = ids[soa_idx[i]+1:eoa_idx[i]]
|
207 |
+
if codec_ids[0] == 32016:
|
208 |
+
codec_ids = codec_ids[1:]
|
209 |
+
codec_ids = codec_ids[:2 * (codec_ids.shape[0] // 2)]
|
210 |
+
vocals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[0])
|
211 |
+
vocals.append(vocals_ids)
|
212 |
+
instrumentals_ids = codectool.ids2npy(rearrange(codec_ids,"(n b) -> b n", b=2)[1])
|
213 |
+
instrumentals.append(instrumentals_ids)
|
214 |
+
vocals = np.concatenate(vocals, axis=1)
|
215 |
+
instrumentals = np.concatenate(instrumentals, axis=1)
|
216 |
+
vocal_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_vocal_{random_id}".replace('.', '@')+'.npy')
|
217 |
+
inst_save_path = os.path.join(stage1_output_dir, f"cot_{genres.replace(' ', '-')}_tp{top_p}_T{temperature}_rp{repetition_penalty}_maxtk{max_new_tokens}_instrumental_{random_id}".replace('.', '@')+'.npy')
|
218 |
+
np.save(vocal_save_path, vocals)
|
219 |
+
np.save(inst_save_path, instrumentals)
|
220 |
+
stage1_output_set.append(vocal_save_path)
|
221 |
+
stage1_output_set.append(inst_save_path)
|
222 |
+
|
223 |
+
|
224 |
+
# offload model
|
225 |
+
if not args.disable_offload_model:
|
226 |
+
model.cpu()
|
227 |
+
del model
|
228 |
+
torch.cuda.empty_cache()
|
229 |
+
|
230 |
+
print("Stage 2 inference...")
|
231 |
+
model_stage2 = AutoModelForCausalLM.from_pretrained(
|
232 |
+
stage2_model,
|
233 |
+
torch_dtype=torch.float16,
|
234 |
+
attn_implementation="flash_attention_2"
|
235 |
+
)
|
236 |
+
model_stage2.to(device)
|
237 |
+
model_stage2.eval()
|
238 |
+
|
239 |
+
def stage2_generate(model, prompt, batch_size=16):
|
240 |
+
codec_ids = codectool.unflatten(prompt, n_quantizer=1)
|
241 |
+
codec_ids = codectool.offset_tok_ids(
|
242 |
+
codec_ids,
|
243 |
+
global_offset=codectool.global_offset,
|
244 |
+
codebook_size=codectool.codebook_size,
|
245 |
+
num_codebooks=codectool.num_codebooks,
|
246 |
+
).astype(np.int32)
|
247 |
+
|
248 |
+
# Prepare prompt_ids based on batch size or single input
|
249 |
+
if batch_size > 1:
|
250 |
+
codec_list = []
|
251 |
+
for i in range(batch_size):
|
252 |
+
idx_begin = i * 300
|
253 |
+
idx_end = (i + 1) * 300
|
254 |
+
codec_list.append(codec_ids[:, idx_begin:idx_end])
|
255 |
+
|
256 |
+
codec_ids = np.concatenate(codec_list, axis=0)
|
257 |
+
prompt_ids = np.concatenate(
|
258 |
+
[
|
259 |
+
np.tile([mmtokenizer.soa, mmtokenizer.stage_1], (batch_size, 1)),
|
260 |
+
codec_ids,
|
261 |
+
np.tile([mmtokenizer.stage_2], (batch_size, 1)),
|
262 |
+
],
|
263 |
+
axis=1
|
264 |
+
)
|
265 |
+
else:
|
266 |
+
prompt_ids = np.concatenate([
|
267 |
+
np.array([mmtokenizer.soa, mmtokenizer.stage_1]),
|
268 |
+
codec_ids.flatten(), # Flatten the 2D array to 1D
|
269 |
+
np.array([mmtokenizer.stage_2])
|
270 |
+
]).astype(np.int32)
|
271 |
+
prompt_ids = prompt_ids[np.newaxis, ...]
|
272 |
+
|
273 |
+
codec_ids = torch.as_tensor(codec_ids).to(device)
|
274 |
+
prompt_ids = torch.as_tensor(prompt_ids).to(device)
|
275 |
+
len_prompt = prompt_ids.shape[-1]
|
276 |
+
|
277 |
+
block_list = LogitsProcessorList([BlockTokenRangeProcessor(0, 46358), BlockTokenRangeProcessor(53526, mmtokenizer.vocab_size)])
|
278 |
+
|
279 |
+
# Teacher forcing generate loop
|
280 |
+
for frames_idx in range(codec_ids.shape[1]):
|
281 |
+
cb0 = codec_ids[:, frames_idx:frames_idx+1]
|
282 |
+
prompt_ids = torch.cat([prompt_ids, cb0], dim=1)
|
283 |
+
input_ids = prompt_ids
|
284 |
+
|
285 |
+
with torch.no_grad():
|
286 |
+
stage2_output = model.generate(input_ids=input_ids,
|
287 |
+
min_new_tokens=7,
|
288 |
+
max_new_tokens=7,
|
289 |
+
eos_token_id=mmtokenizer.eoa,
|
290 |
+
pad_token_id=mmtokenizer.eoa,
|
291 |
+
logits_processor=block_list,
|
292 |
+
)
|
293 |
+
|
294 |
+
assert stage2_output.shape[1] - prompt_ids.shape[1] == 7, f"output new tokens={stage2_output.shape[1]-prompt_ids.shape[1]}"
|
295 |
+
prompt_ids = stage2_output
|
296 |
+
|
297 |
+
# Return output based on batch size
|
298 |
+
if batch_size > 1:
|
299 |
+
output = prompt_ids.cpu().numpy()[:, len_prompt:]
|
300 |
+
output_list = [output[i] for i in range(batch_size)]
|
301 |
+
output = np.concatenate(output_list, axis=0)
|
302 |
+
else:
|
303 |
+
output = prompt_ids[0].cpu().numpy()[len_prompt:]
|
304 |
+
|
305 |
+
return output
|
306 |
+
|
307 |
+
def stage2_inference(model, stage1_output_set, stage2_output_dir, batch_size=4):
|
308 |
+
stage2_result = []
|
309 |
+
for i in tqdm(range(len(stage1_output_set))):
|
310 |
+
output_filename = os.path.join(stage2_output_dir, os.path.basename(stage1_output_set[i]))
|
311 |
+
|
312 |
+
if os.path.exists(output_filename):
|
313 |
+
print(f'{output_filename} stage2 has done.')
|
314 |
+
continue
|
315 |
+
|
316 |
+
# Load the prompt
|
317 |
+
prompt = np.load(stage1_output_set[i]).astype(np.int32)
|
318 |
+
|
319 |
+
# Only accept 6s segments
|
320 |
+
output_duration = prompt.shape[-1] // 50 // 6 * 6
|
321 |
+
num_batch = output_duration // 6
|
322 |
+
|
323 |
+
if num_batch <= batch_size:
|
324 |
+
# If num_batch is less than or equal to batch_size, we can infer the entire prompt at once
|
325 |
+
output = stage2_generate(model, prompt[:, :output_duration*50], batch_size=num_batch)
|
326 |
+
else:
|
327 |
+
# If num_batch is greater than batch_size, process in chunks of batch_size
|
328 |
+
segments = []
|
329 |
+
num_segments = (num_batch // batch_size) + (1 if num_batch % batch_size != 0 else 0)
|
330 |
+
|
331 |
+
for seg in range(num_segments):
|
332 |
+
start_idx = seg * batch_size * 300
|
333 |
+
# Ensure the end_idx does not exceed the available length
|
334 |
+
end_idx = min((seg + 1) * batch_size * 300, output_duration*50) # Adjust the last segment
|
335 |
+
current_batch_size = batch_size if seg != num_segments-1 or num_batch % batch_size == 0 else num_batch % batch_size
|
336 |
+
segment = stage2_generate(
|
337 |
+
model,
|
338 |
+
prompt[:, start_idx:end_idx],
|
339 |
+
batch_size=current_batch_size
|
340 |
+
)
|
341 |
+
segments.append(segment)
|
342 |
+
|
343 |
+
# Concatenate all the segments
|
344 |
+
output = np.concatenate(segments, axis=0)
|
345 |
+
|
346 |
+
# Process the ending part of the prompt
|
347 |
+
if output_duration*50 != prompt.shape[-1]:
|
348 |
+
ending = stage2_generate(model, prompt[:, output_duration*50:], batch_size=1)
|
349 |
+
output = np.concatenate([output, ending], axis=0)
|
350 |
+
output = codectool_stage2.ids2npy(output)
|
351 |
+
|
352 |
+
# Fix invalid codes (a dirty solution, which may harm the quality of audio)
|
353 |
+
# We are trying to find better one
|
354 |
+
fixed_output = copy.deepcopy(output)
|
355 |
+
for i, line in enumerate(output):
|
356 |
+
for j, element in enumerate(line):
|
357 |
+
if element < 0 or element > 1023:
|
358 |
+
counter = Counter(line)
|
359 |
+
most_frequant = sorted(counter.items(), key=lambda x: x[1], reverse=True)[0][0]
|
360 |
+
fixed_output[i, j] = most_frequant
|
361 |
+
# save output
|
362 |
+
np.save(output_filename, fixed_output)
|
363 |
+
stage2_result.append(output_filename)
|
364 |
+
return stage2_result
|
365 |
+
|
366 |
+
stage2_result = stage2_inference(model_stage2, stage1_output_set, stage2_output_dir, batch_size=args.stage2_batch_size)
|
367 |
+
print(stage2_result)
|
368 |
+
print('Stage 2 DONE.\n')
|
369 |
+
# convert audio tokens to audio
|
370 |
+
def save_audio(wav: torch.Tensor, path, sample_rate: int, rescale: bool = False):
|
371 |
+
folder_path = os.path.dirname(path)
|
372 |
+
if not os.path.exists(folder_path):
|
373 |
+
os.makedirs(folder_path)
|
374 |
+
limit = 0.99
|
375 |
+
max_val = wav.abs().max()
|
376 |
+
wav = wav * min(limit / max_val, 1) if rescale else wav.clamp(-limit, limit)
|
377 |
+
torchaudio.save(str(path), wav, sample_rate=sample_rate, encoding='PCM_S', bits_per_sample=16)
|
378 |
+
# reconstruct tracks
|
379 |
+
recons_output_dir = os.path.join(args.output_dir, "recons")
|
380 |
+
recons_mix_dir = os.path.join(recons_output_dir, 'mix')
|
381 |
+
os.makedirs(recons_mix_dir, exist_ok=True)
|
382 |
+
tracks = []
|
383 |
+
for npy in stage2_result:
|
384 |
+
codec_result = np.load(npy)
|
385 |
+
decodec_rlt=[]
|
386 |
+
with torch.no_grad():
|
387 |
+
decoded_waveform = codec_model.decode(torch.as_tensor(codec_result.astype(np.int16), dtype=torch.long).unsqueeze(0).permute(1, 0, 2).to(device))
|
388 |
+
decoded_waveform = decoded_waveform.cpu().squeeze(0)
|
389 |
+
decodec_rlt.append(torch.as_tensor(decoded_waveform))
|
390 |
+
decodec_rlt = torch.cat(decodec_rlt, dim=-1)
|
391 |
+
save_path = os.path.join(recons_output_dir, os.path.splitext(os.path.basename(npy))[0] + ".mp3")
|
392 |
+
tracks.append(save_path)
|
393 |
+
save_audio(decodec_rlt, save_path, 16000)
|
394 |
+
# mix tracks
|
395 |
+
for inst_path in tracks:
|
396 |
+
try:
|
397 |
+
if (inst_path.endswith('.wav') or inst_path.endswith('.mp3')) \
|
398 |
+
and 'instrumental' in inst_path:
|
399 |
+
# find pair
|
400 |
+
vocal_path = inst_path.replace('instrumental', 'vocal')
|
401 |
+
if not os.path.exists(vocal_path):
|
402 |
+
continue
|
403 |
+
# mix
|
404 |
+
recons_mix = os.path.join(recons_mix_dir, os.path.basename(inst_path).replace('instrumental', 'mixed'))
|
405 |
+
vocal_stem, sr = sf.read(inst_path)
|
406 |
+
instrumental_stem, _ = sf.read(vocal_path)
|
407 |
+
mix_stem = (vocal_stem + instrumental_stem) / 1
|
408 |
+
sf.write(recons_mix, mix_stem, sr)
|
409 |
+
except Exception as e:
|
410 |
+
print(e)
|
411 |
+
|
412 |
+
# vocoder to upsample audios
|
413 |
+
vocal_decoder, inst_decoder = build_codec_model(args.config_path, args.vocal_decoder_path, args.inst_decoder_path)
|
414 |
+
vocoder_output_dir = os.path.join(args.output_dir, 'vocoder')
|
415 |
+
vocoder_stems_dir = os.path.join(vocoder_output_dir, 'stems')
|
416 |
+
vocoder_mix_dir = os.path.join(vocoder_output_dir, 'mix')
|
417 |
+
os.makedirs(vocoder_mix_dir, exist_ok=True)
|
418 |
+
os.makedirs(vocoder_stems_dir, exist_ok=True)
|
419 |
+
for npy in stage2_result:
|
420 |
+
if 'instrumental' in npy:
|
421 |
+
# Process instrumental
|
422 |
+
instrumental_output = process_audio(
|
423 |
+
npy,
|
424 |
+
os.path.join(vocoder_stems_dir, 'instrumental.mp3'),
|
425 |
+
args.rescale,
|
426 |
+
args,
|
427 |
+
inst_decoder,
|
428 |
+
codec_model
|
429 |
+
)
|
430 |
+
else:
|
431 |
+
# Process vocal
|
432 |
+
vocal_output = process_audio(
|
433 |
+
npy,
|
434 |
+
os.path.join(vocoder_stems_dir, 'vocal.mp3'),
|
435 |
+
args.rescale,
|
436 |
+
args,
|
437 |
+
vocal_decoder,
|
438 |
+
codec_model
|
439 |
+
)
|
440 |
+
# mix tracks
|
441 |
+
try:
|
442 |
+
mix_output = instrumental_output + vocal_output
|
443 |
+
vocoder_mix = os.path.join(vocoder_mix_dir, os.path.basename(recons_mix))
|
444 |
+
save_audio(mix_output, vocoder_mix, 44100, args.rescale)
|
445 |
+
print(f"Created mix: {vocoder_mix}")
|
446 |
+
except RuntimeError as e:
|
447 |
+
print(e)
|
448 |
+
print(f"mix {vocoder_mix} failed! inst: {instrumental_output.shape}, vocal: {vocal_output.shape}")
|
449 |
+
|
450 |
+
# Post process
|
451 |
+
replace_low_freq_with_energy_matched(
|
452 |
+
a_file=recons_mix, # 16kHz
|
453 |
+
b_file=vocoder_mix, # 48kHz
|
454 |
+
c_file=os.path.join(args.output_dir, os.path.basename(recons_mix)),
|
455 |
+
cutoff_freq=5500.0
|
456 |
+
)
|
inference/mm_tokenizer_v0.2_hf/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee5c7cbf32da93989f14d9ba635e3e1d1ab2cc88a92908a5ed0f149375f6ee49
|
3 |
+
size 1761962
|
inference/mmtokenizer.py
ADDED
@@ -0,0 +1,367 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC
|
2 |
+
from abc import abstractmethod
|
3 |
+
|
4 |
+
|
5 |
+
class AbstractTokenizer(ABC):
|
6 |
+
"""Abstract class for tokenizer."""
|
7 |
+
|
8 |
+
def __init__(self, name):
|
9 |
+
self.name = name
|
10 |
+
super().__init__()
|
11 |
+
|
12 |
+
@property
|
13 |
+
@abstractmethod
|
14 |
+
def vocab_size(self):
|
15 |
+
pass
|
16 |
+
|
17 |
+
@property
|
18 |
+
@abstractmethod
|
19 |
+
def vocab(self):
|
20 |
+
"""Dictionary from vocab text token to id token."""
|
21 |
+
pass
|
22 |
+
|
23 |
+
@property
|
24 |
+
@abstractmethod
|
25 |
+
def inv_vocab(self):
|
26 |
+
"""Dictionary from vocab id token to text token."""
|
27 |
+
pass
|
28 |
+
|
29 |
+
@abstractmethod
|
30 |
+
def tokenize(self, text):
|
31 |
+
pass
|
32 |
+
|
33 |
+
def detokenize(self, token_ids):
|
34 |
+
raise NotImplementedError('detokenizer is not implemented for {} '
|
35 |
+
'tokenizer'.format(self.name))
|
36 |
+
|
37 |
+
@property
|
38 |
+
def cls(self):
|
39 |
+
raise NotImplementedError('CLS is not provided for {} '
|
40 |
+
'tokenizer'.format(self.name))
|
41 |
+
|
42 |
+
@property
|
43 |
+
def sep(self):
|
44 |
+
raise NotImplementedError('SEP is not provided for {} '
|
45 |
+
'tokenizer'.format(self.name))
|
46 |
+
|
47 |
+
@property
|
48 |
+
def pad(self):
|
49 |
+
raise NotImplementedError('PAD is not provided for {} '
|
50 |
+
'tokenizer'.format(self.name))
|
51 |
+
|
52 |
+
@property
|
53 |
+
def eod(self):
|
54 |
+
raise NotImplementedError('EOD is not provided for {} '
|
55 |
+
'tokenizer'.format(self.name))
|
56 |
+
|
57 |
+
@property
|
58 |
+
def mask(self):
|
59 |
+
raise NotImplementedError('MASK is not provided for {} '
|
60 |
+
'tokenizer'.format(self.name))
|
61 |
+
|
62 |
+
|
63 |
+
class _SentencePieceTokenizer(AbstractTokenizer):
|
64 |
+
"""SentencePieceTokenizer-Megatron wrapper"""
|
65 |
+
|
66 |
+
def __init__(self, model_file, vocab_extra_ids=0):
|
67 |
+
name = 'SentencePieceTokenizer'
|
68 |
+
super().__init__(name)
|
69 |
+
|
70 |
+
import sentencepiece
|
71 |
+
self.tokenizer = sentencepiece.SentencePieceProcessor(model_file=model_file)
|
72 |
+
self._initalize(vocab_extra_ids)
|
73 |
+
|
74 |
+
def _populate_vocab(self):
|
75 |
+
self._vocab = {}
|
76 |
+
self._inv_vocab = {}
|
77 |
+
|
78 |
+
for i in range(len(self.tokenizer)):
|
79 |
+
t = self.tokenizer.id_to_piece(i)
|
80 |
+
self._inv_vocab[i] = t
|
81 |
+
self._vocab[t] = i
|
82 |
+
|
83 |
+
def _initalize(self, vocab_extra_ids):
|
84 |
+
self._populate_vocab()
|
85 |
+
self._special_tokens = {}
|
86 |
+
self._inv_special_tokens = {}
|
87 |
+
|
88 |
+
self._t5_tokens = []
|
89 |
+
|
90 |
+
def _add_special_token(t):
|
91 |
+
if t not in self._vocab:
|
92 |
+
next_id = len(self._vocab)
|
93 |
+
self._vocab[t] = next_id
|
94 |
+
self._inv_vocab[next_id] = t
|
95 |
+
self._special_tokens[t] = self._vocab[t]
|
96 |
+
self._inv_special_tokens[self._vocab[t]] = t
|
97 |
+
|
98 |
+
_add_special_token('<CLS>')
|
99 |
+
self._cls_id = self._vocab['<CLS>']
|
100 |
+
_add_special_token('<SEP>')
|
101 |
+
self._sep_id = self._vocab['<SEP>']
|
102 |
+
_add_special_token('<EOD>')
|
103 |
+
self._eod_id = self._vocab['<EOD>']
|
104 |
+
_add_special_token('<MASK>')
|
105 |
+
self._mask_id = self._vocab['<MASK>']
|
106 |
+
|
107 |
+
pad_id = self.tokenizer.pad_id()
|
108 |
+
try:
|
109 |
+
pad_token = self.tokenizer.id_to_piece(pad_id)
|
110 |
+
except IndexError:
|
111 |
+
pad_token = '<PAD>'
|
112 |
+
_add_special_token(pad_token)
|
113 |
+
self._pad_id = self._vocab[pad_token]
|
114 |
+
|
115 |
+
bos_id = self.tokenizer.bos_id()
|
116 |
+
try:
|
117 |
+
bos_token = self.tokenizer.id_to_piece(bos_id)
|
118 |
+
except IndexError:
|
119 |
+
bos_token = '<BOS>'
|
120 |
+
_add_special_token(bos_token)
|
121 |
+
self._bos_id = self._vocab[bos_token]
|
122 |
+
|
123 |
+
eos_id = self.tokenizer.eos_id()
|
124 |
+
try:
|
125 |
+
eos_token = self.tokenizer.id_to_piece(eos_id)
|
126 |
+
except IndexError:
|
127 |
+
eos_token = '<EOS>'
|
128 |
+
_add_special_token(eos_token)
|
129 |
+
self._eos_id = self._vocab[eos_token]
|
130 |
+
|
131 |
+
for i in range(vocab_extra_ids):
|
132 |
+
t = "<extra_id_{}>".format(i)
|
133 |
+
_add_special_token(t)
|
134 |
+
self._t5_tokens += [t]
|
135 |
+
|
136 |
+
@property
|
137 |
+
def vocab_size(self):
|
138 |
+
return len(self._vocab)
|
139 |
+
|
140 |
+
@property
|
141 |
+
def vocab(self):
|
142 |
+
return self._vocab
|
143 |
+
|
144 |
+
@property
|
145 |
+
def inv_vocab(self):
|
146 |
+
return self._inv_vocab
|
147 |
+
|
148 |
+
@property
|
149 |
+
def decoder(self):
|
150 |
+
return self._inv_vocab
|
151 |
+
|
152 |
+
@property
|
153 |
+
def encoder(self):
|
154 |
+
return self._vocab
|
155 |
+
|
156 |
+
# From:
|
157 |
+
# https://github.com/NVIDIA/NeMo/blob/c8fa217e811d60d11d014827c7f3845ff6c99ae7/nemo/collections/common/tokenizers/sentencepiece_tokenizer.py#L89
|
158 |
+
def tokenize(self, text):
|
159 |
+
ids = []
|
160 |
+
idx = 0
|
161 |
+
|
162 |
+
while 1:
|
163 |
+
indices = {}
|
164 |
+
for token in self._special_tokens:
|
165 |
+
try:
|
166 |
+
indices[token] = text[idx:].index(token)
|
167 |
+
except ValueError:
|
168 |
+
continue
|
169 |
+
if len(indices) == 0:
|
170 |
+
break
|
171 |
+
|
172 |
+
next_token = min(indices, key=indices.get)
|
173 |
+
next_idx = idx + indices[next_token]
|
174 |
+
|
175 |
+
ids.extend(self.tokenizer.encode_as_ids(text[idx:next_idx]))
|
176 |
+
ids.append(self._special_tokens[next_token])
|
177 |
+
idx = next_idx + len(next_token)
|
178 |
+
|
179 |
+
ids.extend(self.tokenizer.encode_as_ids(text[idx:]))
|
180 |
+
return ids
|
181 |
+
|
182 |
+
# From:
|
183 |
+
# https://github.com/NVIDIA/NeMo/blob/c8fa217e811d60d11d014827c7f3845ff6c99ae7/nemo/collections/common/tokenizers/sentencepiece_tokenizer.py#L125
|
184 |
+
def detokenize(self, ids):
|
185 |
+
text = ""
|
186 |
+
last_i = 0
|
187 |
+
|
188 |
+
for i, id in enumerate(ids):
|
189 |
+
if id in self._inv_special_tokens:
|
190 |
+
text += self.tokenizer.decode_ids(ids[last_i:i]) + " "
|
191 |
+
text += self._inv_special_tokens[id] + " "
|
192 |
+
last_i = i + 1
|
193 |
+
|
194 |
+
text += self.tokenizer.decode_ids(ids[last_i:])
|
195 |
+
return text
|
196 |
+
|
197 |
+
@property
|
198 |
+
def cls(self):
|
199 |
+
return self._cls_id
|
200 |
+
|
201 |
+
@property
|
202 |
+
def sep(self):
|
203 |
+
return self._sep_id
|
204 |
+
|
205 |
+
@property
|
206 |
+
def pad(self):
|
207 |
+
return self._pad_id
|
208 |
+
|
209 |
+
@property
|
210 |
+
def bos_token_id(self):
|
211 |
+
return self._bos_id
|
212 |
+
|
213 |
+
@property
|
214 |
+
def bos(self):
|
215 |
+
return self._bos_id
|
216 |
+
|
217 |
+
@property
|
218 |
+
def eod(self):
|
219 |
+
return self._eod_id
|
220 |
+
|
221 |
+
@property
|
222 |
+
def eos_token_id(self):
|
223 |
+
return self._eos_id
|
224 |
+
|
225 |
+
@property
|
226 |
+
def eos(self):
|
227 |
+
return self._eos_id
|
228 |
+
|
229 |
+
@property
|
230 |
+
def mask(self):
|
231 |
+
return self._mask_id
|
232 |
+
|
233 |
+
@property
|
234 |
+
def additional_special_tokens_ids(self):
|
235 |
+
return [self.vocab[k] for k in self._t5_tokens]
|
236 |
+
|
237 |
+
class _MMSentencePieceTokenizer(_SentencePieceTokenizer):
|
238 |
+
"""SentencePieceTokenizer-Megatron wrapper"""
|
239 |
+
|
240 |
+
def __init__(self, model_file, vocab_extra_ids=0):
|
241 |
+
super().__init__(model_file, vocab_extra_ids)
|
242 |
+
|
243 |
+
|
244 |
+
def _initalize(self, vocab_extra_ids):
|
245 |
+
self._populate_vocab()
|
246 |
+
self._special_tokens = {}
|
247 |
+
self._inv_special_tokens = {}
|
248 |
+
|
249 |
+
self._t5_tokens = []
|
250 |
+
|
251 |
+
def _add_special_token(t):
|
252 |
+
if t not in self._vocab:
|
253 |
+
next_id = len(self._vocab)
|
254 |
+
self._vocab[t] = next_id
|
255 |
+
self._inv_vocab[next_id] = t
|
256 |
+
self._special_tokens[t] = self._vocab[t]
|
257 |
+
self._inv_special_tokens[self._vocab[t]] = t
|
258 |
+
|
259 |
+
_add_special_token('<CLS>')
|
260 |
+
self._cls_id = self._vocab['<CLS>']
|
261 |
+
_add_special_token('<SEP>')
|
262 |
+
self._sep_id = self._vocab['<SEP>']
|
263 |
+
_add_special_token('<EOD>')
|
264 |
+
self._eod_id = self._vocab['<EOD>']
|
265 |
+
_add_special_token('<MASK>')
|
266 |
+
self._mask_id = self._vocab['<MASK>']
|
267 |
+
|
268 |
+
_add_special_token('<SOA>')
|
269 |
+
self._soa_id = self._vocab['<SOA>']
|
270 |
+
_add_special_token('<EOA>')
|
271 |
+
self._eoa_id = self._vocab['<EOA>']
|
272 |
+
_add_special_token('<SOV>')
|
273 |
+
self._sov_id = self._vocab['<SOV>']
|
274 |
+
_add_special_token('<EOV>')
|
275 |
+
self._eov_id = self._vocab['<EOV>']
|
276 |
+
_add_special_token('<SOI>')
|
277 |
+
self._soi_id = self._vocab['<SOI>']
|
278 |
+
_add_special_token('<EOI>')
|
279 |
+
self._eoi_id = self._vocab['<EOI>']
|
280 |
+
_add_special_token('<s_local>')
|
281 |
+
self._s_local_id = self._vocab['<s_local>']
|
282 |
+
_add_special_token('<e_local>')
|
283 |
+
self._e_local_id = self._vocab['<e_local>']
|
284 |
+
_add_special_token('<s_global>')
|
285 |
+
self._s_global_id = self._vocab['<s_global>']
|
286 |
+
_add_special_token('<e_global>')
|
287 |
+
self._e_global_id = self._vocab['<e_global>']
|
288 |
+
_add_special_token('<stage_1>')
|
289 |
+
self._stage_1_id = self._vocab['<stage_1>']
|
290 |
+
_add_special_token('<stage_2>')
|
291 |
+
self._stage_2_id = self._vocab['<stage_2>']
|
292 |
+
pad_id = self.tokenizer.pad_id()
|
293 |
+
try:
|
294 |
+
pad_token = self.tokenizer.id_to_piece(pad_id)
|
295 |
+
except IndexError:
|
296 |
+
pad_token = '<PAD>'
|
297 |
+
_add_special_token(pad_token)
|
298 |
+
self._pad_id = self._vocab[pad_token]
|
299 |
+
|
300 |
+
bos_id = self.tokenizer.bos_id()
|
301 |
+
try:
|
302 |
+
bos_token = self.tokenizer.id_to_piece(bos_id)
|
303 |
+
except IndexError:
|
304 |
+
bos_token = '<BOS>'
|
305 |
+
_add_special_token(bos_token)
|
306 |
+
self._bos_id = self._vocab[bos_token]
|
307 |
+
|
308 |
+
eos_id = self.tokenizer.eos_id()
|
309 |
+
try:
|
310 |
+
eos_token = self.tokenizer.id_to_piece(eos_id)
|
311 |
+
except IndexError:
|
312 |
+
eos_token = '<EOS>'
|
313 |
+
_add_special_token(eos_token)
|
314 |
+
self._eos_id = self._vocab[eos_token]
|
315 |
+
|
316 |
+
for i in range(vocab_extra_ids):
|
317 |
+
t = "<extra_id_{}>".format(i)
|
318 |
+
_add_special_token(t)
|
319 |
+
self._t5_tokens += [t]
|
320 |
+
|
321 |
+
@property
|
322 |
+
def soa(self):
|
323 |
+
return self._soa_id
|
324 |
+
|
325 |
+
@property
|
326 |
+
def eoa(self):
|
327 |
+
return self._eoa_id
|
328 |
+
|
329 |
+
@property
|
330 |
+
def sov(self):
|
331 |
+
return self._sov_id
|
332 |
+
|
333 |
+
@property
|
334 |
+
def eov(self):
|
335 |
+
return self._eov_id
|
336 |
+
|
337 |
+
@property
|
338 |
+
def soi(self):
|
339 |
+
return self._soi_id
|
340 |
+
|
341 |
+
@property
|
342 |
+
def eoi(self):
|
343 |
+
return self._eoi_id
|
344 |
+
|
345 |
+
@property
|
346 |
+
def s_local(self):
|
347 |
+
return self._s_local_id
|
348 |
+
|
349 |
+
@property
|
350 |
+
def e_local(self):
|
351 |
+
return self._e_local_id
|
352 |
+
|
353 |
+
@property
|
354 |
+
def s_global(self):
|
355 |
+
return self._s_global_id
|
356 |
+
|
357 |
+
@property
|
358 |
+
def e_global(self):
|
359 |
+
return self._e_global_id
|
360 |
+
|
361 |
+
@property
|
362 |
+
def stage_1(self):
|
363 |
+
return self._stage_1_id
|
364 |
+
|
365 |
+
@property
|
366 |
+
def stage_2(self):
|
367 |
+
return self._stage_2_id
|
inference/prompt_examples/genre.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
inspiring female uplifting pop airy vocal electronic bright vocal vocal
|
inference/prompt_examples/lyrics.txt
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[verse]
|
2 |
+
Staring at the sunset, colors paint the sky
|
3 |
+
Thoughts of you keep swirling, can't deny
|
4 |
+
I know I let you down, I made mistakes
|
5 |
+
But I'm here to mend the heart I didn't break
|
6 |
+
|
7 |
+
[chorus]
|
8 |
+
Every road you take, I'll be one step behind
|
9 |
+
Every dream you chase, I'm reaching for the light
|
10 |
+
You can't fight this feeling now
|
11 |
+
I won't back down
|
12 |
+
You know you can't deny it now
|
13 |
+
I won't back down
|
14 |
+
|
15 |
+
[verse]
|
16 |
+
They might say I'm foolish, chasing after you
|
17 |
+
But they don't feel this love the way we do
|
18 |
+
My heart beats only for you, can't you see?
|
19 |
+
I won't let you slip away from me
|
20 |
+
|
21 |
+
[chorus]
|
22 |
+
Every road you take, I'll be one step behind
|
23 |
+
Every dream you chase, I'm reaching for the light
|
24 |
+
You can't fight this feeling now
|
25 |
+
I won't back down
|
26 |
+
You know you can't deny it now
|
27 |
+
I won't back down
|
28 |
+
|
29 |
+
[bridge]
|
30 |
+
No, I won't back down, won't turn around
|
31 |
+
Until you're back where you belong
|
32 |
+
I'll cross the oceans wide, stand by your side
|
33 |
+
Together we are strong
|
34 |
+
|
35 |
+
[outro]
|
36 |
+
Every road you take, I'll be one step behind
|
37 |
+
Every dream you chase, love's the tie that binds
|
38 |
+
You can't fight this feeling now
|
39 |
+
I won't back down
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
omegaconf
|
3 |
+
torchaudio
|
4 |
+
einops
|
5 |
+
numpy
|
6 |
+
transformers
|
7 |
+
sentencepiece
|
8 |
+
tqdm
|
9 |
+
tensorboard
|
10 |
+
descript-audiotools>=0.7.2
|
11 |
+
descript-audio-codec
|
12 |
+
scipy==1.10.1
|
wav_top_200_tags.json
ADDED
@@ -0,0 +1,830 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"genre": [
|
3 |
+
"Pop",
|
4 |
+
"rock",
|
5 |
+
"pop",
|
6 |
+
"electronic",
|
7 |
+
"Classical",
|
8 |
+
"R&B",
|
9 |
+
"Electronic",
|
10 |
+
"Rock",
|
11 |
+
"Folk",
|
12 |
+
"rap",
|
13 |
+
"classical",
|
14 |
+
"soundtrack",
|
15 |
+
"country",
|
16 |
+
"indie-rock",
|
17 |
+
"punk",
|
18 |
+
"hiphop",
|
19 |
+
"folk",
|
20 |
+
"jazz",
|
21 |
+
"Country",
|
22 |
+
"hip-hop",
|
23 |
+
"Hip-hop",
|
24 |
+
"experimental",
|
25 |
+
"Hip Hop",
|
26 |
+
"Funk",
|
27 |
+
"blues",
|
28 |
+
"ambient",
|
29 |
+
"Rap",
|
30 |
+
"Jazz",
|
31 |
+
"Ambient",
|
32 |
+
"New Age",
|
33 |
+
"Blues",
|
34 |
+
"experimental pop",
|
35 |
+
"classic rock",
|
36 |
+
"indie rock",
|
37 |
+
"alternative rock",
|
38 |
+
"Reggae",
|
39 |
+
"Electro pop",
|
40 |
+
"K-pop",
|
41 |
+
"Dance",
|
42 |
+
"Soundtrack",
|
43 |
+
"Hip hop",
|
44 |
+
"80s",
|
45 |
+
"Dancehall",
|
46 |
+
"Disco",
|
47 |
+
"House",
|
48 |
+
"Death Metal",
|
49 |
+
"Thrash Metal",
|
50 |
+
"international",
|
51 |
+
"progressive rock",
|
52 |
+
"hard rock",
|
53 |
+
"instrumental",
|
54 |
+
"Lounge",
|
55 |
+
"house",
|
56 |
+
"Latin",
|
57 |
+
"hardcore",
|
58 |
+
"Metalcore",
|
59 |
+
"Soul",
|
60 |
+
"grunge",
|
61 |
+
"Easy listening",
|
62 |
+
"easylistening",
|
63 |
+
"Indian",
|
64 |
+
"ethno",
|
65 |
+
"Hard rock",
|
66 |
+
"hip hop",
|
67 |
+
"Indie Pop",
|
68 |
+
"Electro",
|
69 |
+
"industrial",
|
70 |
+
"grindcore",
|
71 |
+
"post-rock",
|
72 |
+
"Soul-R&B",
|
73 |
+
"Reggaeton",
|
74 |
+
"World",
|
75 |
+
"latin pop",
|
76 |
+
"Classic Rock",
|
77 |
+
"Latin pop",
|
78 |
+
"Deathcore",
|
79 |
+
"soul",
|
80 |
+
"improvisation",
|
81 |
+
"Chinese",
|
82 |
+
"techno",
|
83 |
+
"Salsa",
|
84 |
+
"indie pop",
|
85 |
+
"Hardcore",
|
86 |
+
"拉丁",
|
87 |
+
"Black metal",
|
88 |
+
" Americana",
|
89 |
+
"dance",
|
90 |
+
"rock nacional",
|
91 |
+
"tejano",
|
92 |
+
"indie",
|
93 |
+
"ambient electronic",
|
94 |
+
"world",
|
95 |
+
"Death metal",
|
96 |
+
"Trap",
|
97 |
+
"avant-garde",
|
98 |
+
"Chillout",
|
99 |
+
"Americana",
|
100 |
+
"new wave",
|
101 |
+
"rnb",
|
102 |
+
"pop rock",
|
103 |
+
"post-hardcore",
|
104 |
+
"singer-songwriter",
|
105 |
+
"pop punk",
|
106 |
+
"Power metal",
|
107 |
+
"indie folk",
|
108 |
+
"opera",
|
109 |
+
"Metal",
|
110 |
+
"African",
|
111 |
+
"instrumental rock",
|
112 |
+
"Gospel",
|
113 |
+
"downtempo",
|
114 |
+
"New Wave",
|
115 |
+
"Electro-pop",
|
116 |
+
"rockabilly",
|
117 |
+
"MPB",
|
118 |
+
"goth rock",
|
119 |
+
"soul-R&B",
|
120 |
+
"Black Metal",
|
121 |
+
"Dubstep",
|
122 |
+
"Eurovision",
|
123 |
+
"Bossa Nova",
|
124 |
+
"bossanova",
|
125 |
+
"民谣",
|
126 |
+
"big band",
|
127 |
+
"Synthpop",
|
128 |
+
"死亡金属",
|
129 |
+
"中国传统音乐",
|
130 |
+
"glam rock",
|
131 |
+
"国际音乐",
|
132 |
+
"latin",
|
133 |
+
"operatic",
|
134 |
+
"Melodic Death Metal",
|
135 |
+
"lounge",
|
136 |
+
" Regional Mexican",
|
137 |
+
"instrumental pop",
|
138 |
+
"emo",
|
139 |
+
"旋律死亡金属",
|
140 |
+
"Pop Rock",
|
141 |
+
"popfolk",
|
142 |
+
" Latin",
|
143 |
+
"poprock",
|
144 |
+
"eurovision",
|
145 |
+
"Ska",
|
146 |
+
"Techno",
|
147 |
+
"disco",
|
148 |
+
"基督教音乐",
|
149 |
+
"Indie rock",
|
150 |
+
"Goregrind",
|
151 |
+
"8-bit",
|
152 |
+
"Pop rock",
|
153 |
+
"screamo",
|
154 |
+
"Dance pop",
|
155 |
+
"Guitar",
|
156 |
+
"chillout",
|
157 |
+
"beats",
|
158 |
+
"Big band",
|
159 |
+
"mpb",
|
160 |
+
"Bluegrass",
|
161 |
+
"流行",
|
162 |
+
"Thrash metal",
|
163 |
+
"easy listening",
|
164 |
+
"Samba",
|
165 |
+
"Heavy metal",
|
166 |
+
"Symphonic metal",
|
167 |
+
"Chanson",
|
168 |
+
"Oriental",
|
169 |
+
"synthpop",
|
170 |
+
"Girl group",
|
171 |
+
"Epic",
|
172 |
+
"Celtic",
|
173 |
+
"Screamo",
|
174 |
+
"Espanol",
|
175 |
+
"Middle Eastern",
|
176 |
+
"electro",
|
177 |
+
" Soul-R&B",
|
178 |
+
" Classic Rock",
|
179 |
+
"Heavy Metal",
|
180 |
+
"dubstep",
|
181 |
+
"民乐",
|
182 |
+
"country rock",
|
183 |
+
"funk",
|
184 |
+
"ska",
|
185 |
+
"Indie Rock",
|
186 |
+
"Choral",
|
187 |
+
"J-rock",
|
188 |
+
"shoegaze",
|
189 |
+
"Rockabilly",
|
190 |
+
"grime",
|
191 |
+
"Italian pop",
|
192 |
+
"摇滚",
|
193 |
+
" latin",
|
194 |
+
"Bolero",
|
195 |
+
" orchestral",
|
196 |
+
"experimental hip-hop",
|
197 |
+
"eurodance",
|
198 |
+
"noise rock",
|
199 |
+
"electro pop",
|
200 |
+
"noise",
|
201 |
+
"Crossover Country",
|
202 |
+
"Glitch"
|
203 |
+
],
|
204 |
+
"instrument": [
|
205 |
+
"Piano",
|
206 |
+
"drums",
|
207 |
+
"guitar",
|
208 |
+
"electric guitar",
|
209 |
+
"Guitar",
|
210 |
+
"synthesizer",
|
211 |
+
"Synthesizer",
|
212 |
+
"Keyboard",
|
213 |
+
"piano",
|
214 |
+
"Drums",
|
215 |
+
"Violin",
|
216 |
+
"bass",
|
217 |
+
"acoustic guitar",
|
218 |
+
"Bass",
|
219 |
+
"violin",
|
220 |
+
"voice",
|
221 |
+
"vocal",
|
222 |
+
"acousticguitar",
|
223 |
+
"Electric guitar",
|
224 |
+
"Acoustic guitar",
|
225 |
+
"electricguitar",
|
226 |
+
"Voice",
|
227 |
+
"keyboard",
|
228 |
+
"saxophone",
|
229 |
+
"beat",
|
230 |
+
"Drum machine",
|
231 |
+
"Cello",
|
232 |
+
"harmonica",
|
233 |
+
"fiddle",
|
234 |
+
"Percussion",
|
235 |
+
"beatboxing",
|
236 |
+
"Vocal",
|
237 |
+
"鼓",
|
238 |
+
"Saxophone",
|
239 |
+
"keys",
|
240 |
+
"harp",
|
241 |
+
"Keyboards",
|
242 |
+
"keyboards",
|
243 |
+
" harmonica",
|
244 |
+
"singing",
|
245 |
+
"吉他",
|
246 |
+
"贝斯",
|
247 |
+
"钢琴",
|
248 |
+
"beats",
|
249 |
+
"flute",
|
250 |
+
"bass guitar",
|
251 |
+
"drum",
|
252 |
+
"brass",
|
253 |
+
"Flute",
|
254 |
+
"Fiddle",
|
255 |
+
"charango",
|
256 |
+
"Sitar",
|
257 |
+
"strings",
|
258 |
+
"trumpet",
|
259 |
+
"Brass",
|
260 |
+
"Vocals",
|
261 |
+
"Trumpet",
|
262 |
+
"string",
|
263 |
+
"Singing",
|
264 |
+
" banjo",
|
265 |
+
"drum machine",
|
266 |
+
"cello",
|
267 |
+
"Acoustic Guitar",
|
268 |
+
"glockenspiel",
|
269 |
+
"computer",
|
270 |
+
"电吉他",
|
271 |
+
"合成器",
|
272 |
+
"键盘",
|
273 |
+
"mallets",
|
274 |
+
"原声吉他",
|
275 |
+
"Drum",
|
276 |
+
"Bass guitar",
|
277 |
+
"Dholak",
|
278 |
+
"congas",
|
279 |
+
"Electric Guitar",
|
280 |
+
"二胡",
|
281 |
+
"鼓机",
|
282 |
+
"synth",
|
283 |
+
"Strings",
|
284 |
+
"小提琴",
|
285 |
+
"Trombone",
|
286 |
+
"percussion",
|
287 |
+
"弦乐",
|
288 |
+
"electricpiano",
|
289 |
+
"风琴",
|
290 |
+
"oboe",
|
291 |
+
"horns",
|
292 |
+
"Erhu",
|
293 |
+
" synthesizer",
|
294 |
+
"acoustic drums",
|
295 |
+
" pedal steel guitar",
|
296 |
+
" Voice",
|
297 |
+
"Tambourine",
|
298 |
+
"singer-songwriter",
|
299 |
+
"Oud",
|
300 |
+
"Qanun",
|
301 |
+
"electronic",
|
302 |
+
" pedal steel",
|
303 |
+
"rapping",
|
304 |
+
"Funky bass",
|
305 |
+
"guitars",
|
306 |
+
"木吉他",
|
307 |
+
"Alto saxophone",
|
308 |
+
"Ukulele",
|
309 |
+
"扬琴",
|
310 |
+
"oud",
|
311 |
+
"sitar",
|
312 |
+
"打击乐器",
|
313 |
+
"Synth",
|
314 |
+
"organ",
|
315 |
+
"Kanun",
|
316 |
+
"人声",
|
317 |
+
"古筝",
|
318 |
+
" accordion",
|
319 |
+
"bandura",
|
320 |
+
"banjo",
|
321 |
+
"长笛",
|
322 |
+
"pandeira",
|
323 |
+
"turntables",
|
324 |
+
"Alto Saxophone",
|
325 |
+
" slideguitar",
|
326 |
+
" electricguitar",
|
327 |
+
"rap",
|
328 |
+
"harpsichord",
|
329 |
+
"萨克斯管",
|
330 |
+
"maracas",
|
331 |
+
"口琴",
|
332 |
+
"Guitars",
|
333 |
+
"Dobro guitar",
|
334 |
+
"vocals",
|
335 |
+
"choir",
|
336 |
+
"Ableton",
|
337 |
+
"Horns",
|
338 |
+
"AcousticGuitar",
|
339 |
+
"笛子",
|
340 |
+
"synth drums",
|
341 |
+
"Glockenspiel",
|
342 |
+
"Harp",
|
343 |
+
"zither",
|
344 |
+
"Dobro",
|
345 |
+
"Musical instrument",
|
346 |
+
"electric piano",
|
347 |
+
"竖琴",
|
348 |
+
"Horn",
|
349 |
+
"手风琴",
|
350 |
+
"None",
|
351 |
+
"Choir",
|
352 |
+
"铜管乐器",
|
353 |
+
"String",
|
354 |
+
"vocal samples",
|
355 |
+
"trombone",
|
356 |
+
"班卓琴",
|
357 |
+
"hu lu si",
|
358 |
+
"Pandeira",
|
359 |
+
"采样器",
|
360 |
+
" Banjo",
|
361 |
+
"Synth bass",
|
362 |
+
"synth bass",
|
363 |
+
"mallet",
|
364 |
+
" tabla",
|
365 |
+
"dulcimer",
|
366 |
+
"声乐",
|
367 |
+
"Cavaquinho",
|
368 |
+
"大提琴",
|
369 |
+
"toms",
|
370 |
+
"ney",
|
371 |
+
" trumpet",
|
372 |
+
" voice",
|
373 |
+
"低音",
|
374 |
+
"Zither",
|
375 |
+
"shakuhachi",
|
376 |
+
"主唱",
|
377 |
+
" electric guitar",
|
378 |
+
"tambourine",
|
379 |
+
"Turntables",
|
380 |
+
"lyrics",
|
381 |
+
" concertina",
|
382 |
+
" piano",
|
383 |
+
" steel guitar",
|
384 |
+
"Bongos",
|
385 |
+
"Koto",
|
386 |
+
"808 bass",
|
387 |
+
"Marimba",
|
388 |
+
" drums",
|
389 |
+
"Dance",
|
390 |
+
"萨克斯风",
|
391 |
+
"木琴",
|
392 |
+
" bass",
|
393 |
+
"ukulele",
|
394 |
+
"Steel pan",
|
395 |
+
"女声",
|
396 |
+
"键盘乐器",
|
397 |
+
"whistle",
|
398 |
+
"soprano saxophone",
|
399 |
+
"Nylon string guitar",
|
400 |
+
"synth_lead",
|
401 |
+
"电脑",
|
402 |
+
"Shakuhachi",
|
403 |
+
"oboes",
|
404 |
+
"Rap"
|
405 |
+
],
|
406 |
+
"mood": [
|
407 |
+
"Uplifting",
|
408 |
+
"emotional",
|
409 |
+
"uplifting",
|
410 |
+
"happy",
|
411 |
+
"Inspiring",
|
412 |
+
"romantic",
|
413 |
+
"sad",
|
414 |
+
"Love",
|
415 |
+
"melancholic",
|
416 |
+
"dark",
|
417 |
+
"Upbeat",
|
418 |
+
"Energetic",
|
419 |
+
"Romantic",
|
420 |
+
"Melancholic",
|
421 |
+
"Nostalgic",
|
422 |
+
"Calm",
|
423 |
+
"Hopeful",
|
424 |
+
"melodic",
|
425 |
+
"relaxing",
|
426 |
+
"Romance",
|
427 |
+
"Emotional",
|
428 |
+
"Dreamy",
|
429 |
+
"energetic",
|
430 |
+
"rebellious",
|
431 |
+
"Dance",
|
432 |
+
"inspiring",
|
433 |
+
" introspective",
|
434 |
+
"Confident",
|
435 |
+
"aggressive",
|
436 |
+
"Positive",
|
437 |
+
"calm",
|
438 |
+
"cool",
|
439 |
+
"Happy",
|
440 |
+
"hopeful",
|
441 |
+
"beautiful",
|
442 |
+
"advertising",
|
443 |
+
"angry",
|
444 |
+
"Sad",
|
445 |
+
"relaxed",
|
446 |
+
"Celebratory",
|
447 |
+
"Angry",
|
448 |
+
"Bold",
|
449 |
+
"Introspective",
|
450 |
+
"Optimistic",
|
451 |
+
"sentimental",
|
452 |
+
"optimistic",
|
453 |
+
"Tough",
|
454 |
+
"motivational",
|
455 |
+
"Heartfelt",
|
456 |
+
"Funky",
|
457 |
+
"communication",
|
458 |
+
"Danceable",
|
459 |
+
"vivacious",
|
460 |
+
"love",
|
461 |
+
"commercial",
|
462 |
+
"Vivacious",
|
463 |
+
"heavy",
|
464 |
+
"ballad",
|
465 |
+
"thoughtful",
|
466 |
+
"fast-paced",
|
467 |
+
"Futuristic",
|
468 |
+
"Joyful",
|
469 |
+
"emotion",
|
470 |
+
"Soulful",
|
471 |
+
"attitude",
|
472 |
+
"positive",
|
473 |
+
"epic",
|
474 |
+
"Festive",
|
475 |
+
"Melodic",
|
476 |
+
"Dancy",
|
477 |
+
"Aggressive",
|
478 |
+
"soft",
|
479 |
+
"Calming",
|
480 |
+
"exciting",
|
481 |
+
"dreamy",
|
482 |
+
"Epic",
|
483 |
+
"nostalgic",
|
484 |
+
"powerful",
|
485 |
+
"adventure",
|
486 |
+
"passionate",
|
487 |
+
"Determined",
|
488 |
+
"沟通",
|
489 |
+
"Sensual",
|
490 |
+
"Playful",
|
491 |
+
"street",
|
492 |
+
"heartfelt",
|
493 |
+
"Rebellious",
|
494 |
+
"intense",
|
495 |
+
"Sentimental",
|
496 |
+
"inspirational",
|
497 |
+
"travel",
|
498 |
+
"Adventurous",
|
499 |
+
"atmospheric",
|
500 |
+
"summer",
|
501 |
+
"easygoing",
|
502 |
+
"Cheerful",
|
503 |
+
"Cool",
|
504 |
+
"Dark",
|
505 |
+
"rock",
|
506 |
+
"Inspiration",
|
507 |
+
"Chill",
|
508 |
+
"Intense",
|
509 |
+
"confident",
|
510 |
+
"empowering",
|
511 |
+
"Violent",
|
512 |
+
"Intimate",
|
513 |
+
"longing",
|
514 |
+
" meditative",
|
515 |
+
"Attitude",
|
516 |
+
"romance",
|
517 |
+
"experimental",
|
518 |
+
"at sea",
|
519 |
+
"放松",
|
520 |
+
"chill",
|
521 |
+
"Exciting",
|
522 |
+
"Soothing",
|
523 |
+
"Empowering",
|
524 |
+
"暴力",
|
525 |
+
"Brawny",
|
526 |
+
"cheerful",
|
527 |
+
"Motivational",
|
528 |
+
"Vibraphone",
|
529 |
+
"tough",
|
530 |
+
"determined",
|
531 |
+
"hardcore",
|
532 |
+
"Reflective",
|
533 |
+
"funny",
|
534 |
+
"Peaceful",
|
535 |
+
"loud",
|
536 |
+
"Pensive",
|
537 |
+
"向上",
|
538 |
+
"playful",
|
539 |
+
"Furious",
|
540 |
+
"时尚",
|
541 |
+
"希望",
|
542 |
+
"rough",
|
543 |
+
"Intimacy",
|
544 |
+
"dance",
|
545 |
+
"Vibrant",
|
546 |
+
"Relaxed",
|
547 |
+
"soundscape",
|
548 |
+
"Brutal",
|
549 |
+
"thought-provoking",
|
550 |
+
"success",
|
551 |
+
"sleepy",
|
552 |
+
"Elegant",
|
553 |
+
"children",
|
554 |
+
"intimate",
|
555 |
+
"残酷",
|
556 |
+
"怀旧",
|
557 |
+
"improvisational",
|
558 |
+
"浪漫",
|
559 |
+
"Ambient",
|
560 |
+
"Affectionate",
|
561 |
+
"Gory",
|
562 |
+
"Dramatic",
|
563 |
+
"enthusiastic",
|
564 |
+
"感性",
|
565 |
+
"ambient",
|
566 |
+
"Gentle",
|
567 |
+
"愤怒",
|
568 |
+
"快乐",
|
569 |
+
"黑暗",
|
570 |
+
"brawny",
|
571 |
+
"Seductive",
|
572 |
+
"Dancing",
|
573 |
+
"introspective",
|
574 |
+
"instrumental",
|
575 |
+
"Satisfied",
|
576 |
+
"hard",
|
577 |
+
"史诗",
|
578 |
+
" documentary",
|
579 |
+
" dreamy",
|
580 |
+
"Lively",
|
581 |
+
"child",
|
582 |
+
"sassy",
|
583 |
+
"dissonant",
|
584 |
+
"Emotive",
|
585 |
+
"electronic",
|
586 |
+
"抒情",
|
587 |
+
"meditative",
|
588 |
+
"Gloomy",
|
589 |
+
"groovy",
|
590 |
+
" film",
|
591 |
+
"adventure, emotion",
|
592 |
+
"ambitious",
|
593 |
+
"Spiritual",
|
594 |
+
"christmas",
|
595 |
+
"reminiscent",
|
596 |
+
"saloon",
|
597 |
+
"vintage",
|
598 |
+
"梦幻",
|
599 |
+
"爱",
|
600 |
+
"fast_decay",
|
601 |
+
"Comedy",
|
602 |
+
"Asian",
|
603 |
+
"侵略��",
|
604 |
+
"Admirative",
|
605 |
+
" communication",
|
606 |
+
"忧郁"
|
607 |
+
],
|
608 |
+
"gender": [
|
609 |
+
"male",
|
610 |
+
"female",
|
611 |
+
"singing",
|
612 |
+
"soprano",
|
613 |
+
"child",
|
614 |
+
"human",
|
615 |
+
"human female voice",
|
616 |
+
"unspecified",
|
617 |
+
"screamo",
|
618 |
+
"mezzo-soprano",
|
619 |
+
"human voice",
|
620 |
+
"not specified",
|
621 |
+
"tenor",
|
622 |
+
"rapping",
|
623 |
+
"singing voice",
|
624 |
+
"squeaky",
|
625 |
+
"童声",
|
626 |
+
"children"
|
627 |
+
],
|
628 |
+
"timbre": [
|
629 |
+
"bright",
|
630 |
+
"full",
|
631 |
+
"airy",
|
632 |
+
"clear",
|
633 |
+
"mellow",
|
634 |
+
"dark",
|
635 |
+
"rich",
|
636 |
+
"reverb",
|
637 |
+
"light",
|
638 |
+
"crisp",
|
639 |
+
"broad",
|
640 |
+
"powerful",
|
641 |
+
"piercing",
|
642 |
+
"high-pitched",
|
643 |
+
"bass",
|
644 |
+
"deep",
|
645 |
+
"not applicable",
|
646 |
+
"baritone",
|
647 |
+
"not specified",
|
648 |
+
"vibrant",
|
649 |
+
"boomy",
|
650 |
+
"varied",
|
651 |
+
"bouncy",
|
652 |
+
"range",
|
653 |
+
"harsh",
|
654 |
+
" airy",
|
655 |
+
"round",
|
656 |
+
"uplifting",
|
657 |
+
"soft",
|
658 |
+
"husky",
|
659 |
+
"tenor",
|
660 |
+
"pontificate",
|
661 |
+
"aggressive",
|
662 |
+
"neat",
|
663 |
+
"high",
|
664 |
+
"exuberant",
|
665 |
+
"open",
|
666 |
+
"full bodied",
|
667 |
+
"strong",
|
668 |
+
"grainy",
|
669 |
+
"vocal fry",
|
670 |
+
"gravelly",
|
671 |
+
"low",
|
672 |
+
"long_release",
|
673 |
+
"polished",
|
674 |
+
"velvet",
|
675 |
+
"placid",
|
676 |
+
"plastic",
|
677 |
+
"sharp",
|
678 |
+
"robust",
|
679 |
+
"muffled",
|
680 |
+
"distortion",
|
681 |
+
"crunchy",
|
682 |
+
"resonant",
|
683 |
+
"pure",
|
684 |
+
"年轻",
|
685 |
+
"preenched",
|
686 |
+
"gruff",
|
687 |
+
"raspy",
|
688 |
+
"passionate",
|
689 |
+
"nonlinear_env",
|
690 |
+
"high pitched",
|
691 |
+
"athletic",
|
692 |
+
"reedy",
|
693 |
+
"shimmering",
|
694 |
+
"charismatic",
|
695 |
+
"gliding",
|
696 |
+
"raw",
|
697 |
+
"plucky",
|
698 |
+
"loud",
|
699 |
+
"youthful",
|
700 |
+
"thin",
|
701 |
+
"soulful",
|
702 |
+
"smooth",
|
703 |
+
"flat",
|
704 |
+
"tempo-synced",
|
705 |
+
"opulent",
|
706 |
+
"variable",
|
707 |
+
"happy",
|
708 |
+
"prettily",
|
709 |
+
"percussive",
|
710 |
+
"singing voice",
|
711 |
+
"barrel",
|
712 |
+
"breezy",
|
713 |
+
"vocal",
|
714 |
+
"honeyed",
|
715 |
+
"vivacious",
|
716 |
+
"full-bodied",
|
717 |
+
"persuasive",
|
718 |
+
"tender",
|
719 |
+
"potent",
|
720 |
+
"preppy",
|
721 |
+
" raspy",
|
722 |
+
"narrow",
|
723 |
+
"fruity",
|
724 |
+
"whiny",
|
725 |
+
"hollow",
|
726 |
+
"singing",
|
727 |
+
"rapping",
|
728 |
+
"flexible",
|
729 |
+
" alto",
|
730 |
+
"sweet",
|
731 |
+
"agitated",
|
732 |
+
"shaky",
|
733 |
+
"dainty",
|
734 |
+
"明亮",
|
735 |
+
"soprano",
|
736 |
+
"vocal range",
|
737 |
+
"rough",
|
738 |
+
"有力",
|
739 |
+
"成熟",
|
740 |
+
"sultry",
|
741 |
+
"barren",
|
742 |
+
"bulky",
|
743 |
+
"prevalent",
|
744 |
+
"bellowing",
|
745 |
+
"dusty",
|
746 |
+
"elevated",
|
747 |
+
"wide",
|
748 |
+
"rumbly",
|
749 |
+
"shrill",
|
750 |
+
"prettily produced",
|
751 |
+
"projected",
|
752 |
+
"low pitched",
|
753 |
+
"bold",
|
754 |
+
"grassy",
|
755 |
+
"plush",
|
756 |
+
"glorious",
|
757 |
+
"elevated pitch",
|
758 |
+
"whispery",
|
759 |
+
"long",
|
760 |
+
"nasal",
|
761 |
+
"preened",
|
762 |
+
"squeaky",
|
763 |
+
"hellosing",
|
764 |
+
"commanding",
|
765 |
+
"textural",
|
766 |
+
"noble",
|
767 |
+
"frustrated",
|
768 |
+
"warm",
|
769 |
+
"punchy",
|
770 |
+
"pretty",
|
771 |
+
"changeable",
|
772 |
+
"mushy",
|
773 |
+
"vocalist",
|
774 |
+
"gritty",
|
775 |
+
"barking",
|
776 |
+
"human",
|
777 |
+
"bass heavy",
|
778 |
+
"dulcet",
|
779 |
+
" smooth",
|
780 |
+
"young",
|
781 |
+
"rhythmic",
|
782 |
+
"vocals",
|
783 |
+
"helmet",
|
784 |
+
"screamy",
|
785 |
+
"hoarse",
|
786 |
+
"rebellious",
|
787 |
+
"soothing",
|
788 |
+
"童声",
|
789 |
+
"bitter",
|
790 |
+
"为了让声乐更加生动,使用了混响效果。",
|
791 |
+
"barrel-shaped",
|
792 |
+
"reed",
|
793 |
+
"强有力",
|
794 |
+
"低沉",
|
795 |
+
"whimsical",
|
796 |
+
"exaggerated",
|
797 |
+
"温暖",
|
798 |
+
"low-pitched",
|
799 |
+
"emotional",
|
800 |
+
"graceful",
|
801 |
+
"breakable",
|
802 |
+
"screechy",
|
803 |
+
"muddy",
|
804 |
+
"breathy",
|
805 |
+
"柔和",
|
806 |
+
"weathered",
|
807 |
+
"roaring",
|
808 |
+
"青春",
|
809 |
+
"pensive",
|
810 |
+
"textured",
|
811 |
+
"清脆",
|
812 |
+
"melodic",
|
813 |
+
"helmeted",
|
814 |
+
" velvety",
|
815 |
+
"充满活力",
|
816 |
+
"圆润",
|
817 |
+
"preteen",
|
818 |
+
"rhythm",
|
819 |
+
"treble",
|
820 |
+
"shouty",
|
821 |
+
" husky",
|
822 |
+
"medium",
|
823 |
+
"blue",
|
824 |
+
"screeching",
|
825 |
+
"multiphonic",
|
826 |
+
"quaint",
|
827 |
+
"rhytmic",
|
828 |
+
"轻盈"
|
829 |
+
]
|
830 |
+
}
|