inoculatemedia commited on
Commit
d84c09e
·
verified ·
1 Parent(s): fe48b9c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -61
app.py CHANGED
@@ -1,64 +1,47 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
62
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
1
+ from mcp.server.fastmcp import FastMCP
2
+ from gradio_client import Client
3
+ import sys
4
+ import io
5
+ import json
6
+
7
+ mcp = FastMCP("gradio-spaces")
8
+
9
+ clients = {}
10
+
11
+ def get_client(space_id: str) -> Client:
12
+ """Get or create a Gradio client for the specified space."""
13
+ if space_id not in clients:
14
+ clients[space_id] = Client(space_id)
15
+ return clients[space_id]
16
+
17
+
18
+
19
+ @mcp.tool()
20
+ async def generate_image(prompt: str, space_id: str = "inoculatemedia/SanaSprint") -> str:
21
+ """Generate an image using Flux.
22
+
23
+ Args:
24
+ prompt: Text prompt describing the image to generate
25
+ space_id: inoculatemedia/SanaSprint
26
+ """
27
+ client = get_client(space_id)
28
+ result = client.predict(
29
+ prompt=prompt,
30
+ model_size="1.6B",
31
+ seed=0,
32
+ randomize_seed=True,
33
+ width=1024,
34
+ height=1024,
35
+ guidance_scale=4.5,
36
+ num_inference_steps=2,
37
+ api_name="/infer"
38
+ )
39
+ return result
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
 
42
  if __name__ == "__main__":
43
+ import sys
44
+ import io
45
+ sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8')
46
+
47
+ mcp.run(transport='stdio')