Spaces:
Running
Running
File size: 19,876 Bytes
bf80773 fa887a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 |
import subprocess
import sys
def install_package(package):
"""Install package if not available"""
try:
__import__(package)
except ImportError:
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
# Install required packages
try:
install_package("groq")
install_package("python-dotenv")
except:
pass
import os
import gradio as gr
import requests
from groq import Groq
import json
from typing import Dict, List, Tuple, Optional
from datetime import datetime
import re
# Get API keys from Hugging Face secrets (environment variables)
GROQ_API_KEY = os.getenv('GROQ_API_KEY')
BLACKBOX_API_KEY = os.getenv('BLACKBOX_API_KEY')
# Initialize Groq client
client = Groq(api_key=GROQ_API_KEY) if GROQ_API_KEY else None
# BLACKBOX API configuration
BLACKBOX_API_URL = "https://api.blackbox.ai/v1/chat/completions"
def comprehensive_code_review(code: str) -> Dict[str, str]:
"""
Perform comprehensive automated code review using Groq + Llama
"""
if not client:
return {
"groq_review": "Error: Groq API key not configured. Please set GROQ_API_KEY in environment variables.",
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"model": "error"
}
try:
# Enhanced prompt for comprehensive code review
review_prompt = f"""
Perform a comprehensive automated code review for the following code:
```
{code}
```
Provide detailed analysis in the following categories:
1. **CODE QUALITY ASSESSMENT**
- Overall code quality score (1-10)
- Readability and maintainability
- Code structure and organization
2. **STYLE & BEST PRACTICES**
- Coding style compliance
- Naming conventions
- Best practices adherence
- Documentation quality
3. **BUG DETECTION**
- Syntax errors
- Logic errors
- Potential runtime issues
- Edge case handling
4. **SECURITY ANALYSIS**
- Security vulnerabilities
- Input validation issues
- Authentication/authorization concerns
- Data exposure risks
5. **PERFORMANCE OPTIMIZATION**
- Performance bottlenecks
- Memory usage optimization
- Algorithm efficiency
- Database query optimization (if applicable)
6. **IMPROVEMENT SUGGESTIONS**
- Specific code improvements
- Refactoring recommendations
- Alternative implementations
- Testing suggestions
7. **REVIEW COMMENTS**
- Line-by-line review comments
- Priority levels (Critical, High, Medium, Low)
- Actionable recommendations
Format your response with clear headings and provide specific examples where possible.
"""
chat_completion = client.chat.completions.create(
messages=[
{
"role": "system",
"content": "You are a senior software engineer and code review expert. Provide detailed, constructive, and actionable code review feedback."
},
{
"role": "user",
"content": review_prompt
}
],
model="llama3-8b-8192",
temperature=0.1,
max_tokens=2000,
top_p=1,
stream=False,
)
return {
"groq_review": chat_completion.choices[0].message.content,
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"model": "llama3-8b-8192"
}
except Exception as e:
return {
"groq_review": f"Error performing code review: {str(e)}",
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"model": "error"
}
def enhanced_blackbox_review(code: str, groq_review: str) -> str:
"""
Enhanced BLACKBOX.AI review with focus on automated review features
"""
if not BLACKBOX_API_KEY:
return "Error: BLACKBOX API key not configured. Please set BLACKBOX_API_KEY in environment variables."
try:
headers = {
"Authorization": f"Bearer {BLACKBOX_API_KEY}",
"Content-Type": "application/json"
}
payload = {
"model": "blackbox",
"messages": [
{
"role": "system",
"content": "You are BLACKBOX.AI, an expert automated code review assistant. Focus on providing additional insights, alternative solutions, and integration recommendations."
},
{
"role": "user",
"content": f"""
Original Code:
```
{code}
```
Previous Review Analysis:
{groq_review}
Please provide additional automated code review insights:
1. **ADVANCED PATTERNS & ARCHITECTURE**
- Design pattern suggestions
- Architecture improvements
- SOLID principles compliance
2. **FRAMEWORK-SPECIFIC RECOMMENDATIONS**
- Framework best practices
- Library usage optimization
- Integration patterns
3. **SCALABILITY & MAINTAINABILITY**
- Long-term maintainability
- Scalability considerations
- Technical debt assessment
4. **AUTOMATED TESTING SUGGESTIONS**
- Unit test recommendations
- Integration test strategies
- Mock and stub suggestions
5. **DEPLOYMENT & DEVOPS CONSIDERATIONS**
- CI/CD pipeline compatibility
- Containerization readiness
- Configuration management
Provide concrete, actionable recommendations with code examples where appropriate.
"""
}
],
"temperature": 0.2,
"max_tokens": 1500
}
response = requests.post(BLACKBOX_API_URL, headers=headers, json=payload)
if response.status_code == 200:
return response.json()["choices"][0]["message"]["content"]
else:
return f"BLACKBOX.AI enhancement unavailable (Status: {response.status_code})"
except Exception as e:
return f"Error enhancing review with BLACKBOX.AI: {str(e)}"
def generate_review_summary(groq_review: str, blackbox_review: str) -> Dict[str, any]:
"""
Generate a comprehensive review summary with metrics
"""
# Extract key metrics (simplified implementation)
issues_found = groq_review.count("issue") + groq_review.count("error") + groq_review.count("problem")
suggestions_made = groq_review.count("suggest") + groq_review.count("recommend") + groq_review.count("improve")
# Determine overall rating based on content analysis
critical_keywords = ["critical", "security", "vulnerability", "bug", "error"]
critical_issues = sum(1 for keyword in critical_keywords if keyword in groq_review.lower())
if critical_issues > 3:
overall_rating = "Needs Significant Improvement"
elif critical_issues > 1:
overall_rating = "Needs Improvement"
elif issues_found > 5:
overall_rating = "Good with Minor Issues"
else:
overall_rating = "Excellent"
return {
"overall_rating": overall_rating,
"issues_found": issues_found,
"suggestions_made": suggestions_made,
"critical_issues": critical_issues,
"review_date": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
def unified_code_analysis(code: str, analysis_type: str) -> Tuple[str, str, str, str, Dict]:
"""
Unified analysis combining original functionality with automated code review
"""
if analysis_type.lower() == "automated_review":
# Perform comprehensive automated code review
review_result = comprehensive_code_review(code)
groq_analysis = review_result["groq_review"]
# Enhance with BLACKBOX.AI
blackbox_enhancement = enhanced_blackbox_review(code, groq_analysis)
# Generate summary metrics
summary_metrics = generate_review_summary(groq_analysis, blackbox_enhancement)
# Create combined report
combined_analysis = f"""
# π Automated Code Review Report
**Review Date:** {summary_metrics['review_date']}
**Overall Rating:** {summary_metrics['overall_rating']}
**Issues Found:** {summary_metrics['issues_found']}
**Suggestions Made:** {summary_metrics['suggestions_made']}
**Critical Issues:** {summary_metrics['critical_issues']}
---
## π€ Primary AI Review (Groq + Llama)
{groq_analysis}
---
## π Enhanced Review (BLACKBOX.AI)
{blackbox_enhancement}
---
## π Review Summary
This automated code review has identified **{summary_metrics['issues_found']} potential issues** and provided **{summary_metrics['suggestions_made']} improvement suggestions**. The code has been rated as **{summary_metrics['overall_rating']}**.
"""
return groq_analysis, blackbox_enhancement, combined_analysis, f"**Review Rating:** {summary_metrics['overall_rating']}", summary_metrics
else:
return "Invalid analysis type", "", "", "Error", {}
def create_gradio_interface():
"""
Create Gradio interface with proper markdown rendering
"""
def analyze_code_interface(code_input: str, analysis_type: str) -> Tuple[str, str, str]:
"""
Interface function for Gradio - Updated for 3 outputs only
"""
if not code_input.strip():
return "Please enter code to analyze.", "", ""
# Check API configuration
if not GROQ_API_KEY:
error_msg = "β οΈ GROQ API key not configured. Please set GROQ_API_KEY in environment variables."
return error_msg, error_msg, error_msg
if not BLACKBOX_API_KEY:
error_msg = "β οΈ BLACKBOX API key not configured. Please set BLACKBOX_API_KEY in environment variables."
return error_msg, error_msg, error_msg
try:
groq_result, blackbox_result, combined_result, summary, metrics = unified_code_analysis(
code_input, analysis_type.lower().replace(" ", "_")
)
return groq_result, combined_result, summary
except Exception as e:
error_msg = f"Analysis failed: {str(e)}"
return error_msg, error_msg, error_msg
# Create Gradio interface
with gr.Blocks(
title="π§ AI Code Assistant - Automated Review",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1400px !important;
}
.code-input {
font-family: 'Courier New', monospace;
font-size: 14px;
}
.review-summary {
background-color: #f0f8ff;
padding: 10px;
border-radius: 5px;
border-left: 4px solid #4CAF50;
}
.markdown-output {
max-height: 600px;
overflow-y: auto;
padding: 15px;
background-color: #2d2d2d;
border-radius: 8px;
border: 1px solid #404040;
}
.markdown-output h1, .markdown-output h2, .markdown-output h3, .markdown-output h4, .markdown-output h5, .markdown-output h6 {
color: #ffffff !important;
font-weight: bold !important;
}
.markdown-output p, .markdown-output li {
color: #e0e0e0 !important;
line-height: 1.6 !important;
}
.markdown-output strong {
color: #ffeb3b !important;
font-weight: bold !important;
}
.markdown-output code {
background-color: #1e1e1e !important;
color: #4fc3f7 !important;
padding: 2px 6px !important;
border-radius: 4px !important;
}
.markdown-output pre {
background-color: #1e1e1e !important;
color: #4fc3f7 !important;
padding: 10px !important;
border-radius: 6px !important;
overflow-x: auto !important;
}
"""
) as demo:
gr.Markdown("""
# π§ AI Code Assistant
### Powered by BLACKBOX.AI, Groq API, and Llama Models
**Features:**
- π€ **Automated Code Review**: Comprehensive quality assessment and review comments
- π‘οΈ **Security Analysis**: Vulnerability detection and security recommendations
- π **Performance Optimization**: Intelligent suggestions for better performance
- π **Review Comments**: Generate detailed review comments for team collaboration
""")
with gr.Row():
with gr.Column(scale=1):
code_input = gr.Textbox(
label="π Enter Your Code",
placeholder="Paste your code here for automated review...",
lines=18,
elem_classes=["code-input"]
)
analysis_type = gr.Radio(
label="π Analysis Type",
choices=["Automated Review"],
value="Automated Review",
info="Automated code review with comprehensive analysis"
)
analyze_btn = gr.Button("π Analyze Code", variant="primary", size="lg")
# Review summary box
summary_box = gr.Textbox(
label="π Quick Summary",
lines=2,
interactive=False,
elem_classes=["review-summary"]
)
with gr.Column(scale=2):
gr.Markdown("## π Analysis Results")
with gr.Tabs():
with gr.TabItem("π€ Groq + Llama Analysis"):
groq_output = gr.Markdown(
value="Analysis results will appear here...",
elem_classes=["markdown-output"]
)
with gr.TabItem("π Comprehensive Report"):
combined_output = gr.Markdown(
value="Comprehensive report will appear here...",
elem_classes=["markdown-output"]
)
# Event handlers
analyze_btn.click(
fn=analyze_code_interface,
inputs=[code_input, analysis_type],
outputs=[groq_output, combined_output, summary_box]
)
# Example codes section
gr.Markdown("## π Example Codes for Testing")
enhanced_examples = [
["Python - Security Vulnerability", """
import sqlite3
import os
def get_user_data(user_id):
conn = sqlite3.connect('users.db')
cursor = conn.cursor()
# SQL Injection vulnerability
query = f"SELECT * FROM users WHERE id = {user_id}"
cursor.execute(query)
result = cursor.fetchone()
conn.close()
return result
def authenticate_user(username, password):
# Hardcoded credentials - security issue
if username == "admin" and password == "password123":
return True
return False
# No input validation
user_data = get_user_data(input("Enter user ID: "))
print(user_data)
"""],
["JavaScript - Performance Issues", """
// Inefficient DOM manipulation
function updateUserList(users) {
const container = document.getElementById('user-list');
container.innerHTML = ''; // Clearing DOM
for (let i = 0; i < users.length; i++) {
const div = document.createElement('div');
div.innerHTML = `
<h3>${users[i].name}</h3>
<p>${users[i].email}</p>
<button onclick="deleteUser(${users[i].id})">Delete</button>
`;
container.appendChild(div); // Multiple DOM operations
}
}
// Memory leak potential
let globalCache = {};
function cacheUserData(userId, data) {
globalCache[userId] = data; // Never cleaned up
}
// No error handling
async function fetchUserData(userId) {
const response = await fetch(`/api/users/${userId}`);
const data = response.json(); // Missing await
return data;
}
"""],
["Python - Code Quality Issues", """
# Poor naming conventions and structure
def func1(x, y, z):
# No docstring
a = x + y
b = a * z
if b > 100:
c = b / 2
else:
c = b * 2
# Magic numbers
d = c + 42
e = d - 17
# Nested conditions
if e > 50:
if e < 200:
if e % 2 == 0:
return e
else:
return e + 1
else:
return 200
else:
return 50
# Global variables
counter = 0
data_list = []
def process_data():
global counter, data_list
counter += 1
data_list.append(counter)
# Long function with multiple responsibilities
for item in data_list:
if item % 2 == 0:
print(f"Even: {item}")
else:
print(f"Odd: {item}")
# No error handling
result = 10 / (counter - 10) # Potential division by zero
return result
"""]
]
with gr.Row():
for title, code in enhanced_examples:
gr.Button(title, size="sm").click(
lambda c=code: c,
outputs=code_input
)
# Usage instructions
gr.Markdown("""
## π― How to Use the Automated Code Review
### π€ Automated Code Review
- **Purpose**: Comprehensive code quality assessment and review comments
- **Features**: Security analysis, performance optimization, style checking, bug detection
- **Output**: Detailed review report with proper formatting and actionable suggestions
### π‘ Pro Tips
- Use this tool for comprehensive code assessment before team reviews
- Try the example codes to see different types of analysis
- Results are properly formatted with bold headings and clear structure
- Focus on **Critical** and **High** priority issues first
### π What You'll Get
- **Primary AI Analysis**: Detailed code review from Groq + Llama with proper formatting
- **Comprehensive Report**: Combined analysis with actionable insights
- **Quick Summary**: Overview of issues found and overall code rating
""")
return demo
# Launch the application
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch()
|