File size: 22,579 Bytes
62547ed
 
12d776a
62547ed
 
12d776a
 
62547ed
12d776a
 
4f88f01
12d776a
62547ed
12d776a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
from ultralytics import YOLO
import gradio as gr
import numpy as np
from PIL import Image

# Load YOLO model
model = YOLO("best.pt")

# Define what class names indicate a human
HUMAN_CLASSES = ["person", "human"]

# Predict Function
def predict(image):
    image_status = "βœ… Real Image"
    disease_status = "βœ… No Disease Detected"
    details = ""
    audio_html = "alert-1.mp3"  # for autoplay sound

    try:
        results = model(image)
        boxes = results[0].boxes
        class_names = model.names

        found_human = False
        found_disease = False

        if len(boxes) > 0:
            for box in boxes:
                class_id = int(box.cls[0])
                class_name = class_names[class_id].lower()
                confidence = float(box.conf[0])
                details += f"πŸ”Ž {class_name} - {confidence*100:.2f}%\n"

                if class_name in HUMAN_CLASSES:
                    found_human = True
                else:
                    found_disease = True

        if found_human:
            disease_status = "🚨 Human Detected (Invalid Input)"
            audio_html = """<audio autoplay><source src="file/disease_alert.mp3" type="audio/mpeg"></audio>"""
        elif found_disease:
            disease_status = "🚨 Disease Detected"
            audio_html = """<audio autoplay><source src="file/disease_alert.mp3" type="audio/mpeg"></audio>"""
        else:
            disease_status = "βœ… No Disease Detected"

    except Exception as e:
        image_status = "❌ Error"
        disease_status = "⚠️ Detection Failed"
        details = str(e)

    return image_status, disease_status, details, audio_html


# Gradio Interface
with gr.Blocks(title="🚨 AgroScan - Human Alert + Disease Detection") as demo:
    gr.Markdown("""
    <h1 style="text-align:center; color:#2e7d32;">🌿 AgroScan</h1>
    <p style="text-align:center;">
        Upload an image of a plant leaf. If a human or disease is detected, an alert will be triggered with sound 🚨.
    </p>
    """)

    with gr.Row():
        with gr.Column(scale=1):
            image_input = gr.Image(type="pil", label="πŸ“· Upload Image")
            submit_btn = gr.Button("πŸ” Analyze")
        with gr.Column(scale=1):
            result1 = gr.Textbox(label="πŸ–ΌοΈ Image Status")
            result2 = gr.Textbox(label="🌱 Disease Status")
            result3 = gr.Textbox(label="πŸ“‹ Detection Details", lines=5)
            audio_out = gr.HTML(label="🚨 Auto Alert") # autoplay sound (no controls)

    submit_btn.click(fn=predict, inputs=image_input,
                     outputs=[result1, result2, result3, audio_out])

demo.launch()





# from ultralytics import YOLO
# import gradio as gr
# import numpy as np
# from PIL import Image

# # Load YOLO model
# model = YOLO("best.pt")

# # Define human classes
# HUMAN_CLASSES = ["person", "human"]

# # Prediction function
# def predict(image):
#     image_status = "βœ… Real Image"
#     disease_status = "βœ… No Disease Detected"
#     details = ""
#     alert_sound = "alert-1.mp3"  # Will hold sound file path

#     try:
#         results = model(image)
#         boxes = results[0].boxes
#         class_names = model.names

#         found_human = False
#         found_disease = False

#         if len(boxes) > 0:
#             for box in boxes:
#                 class_id = int(box.cls[0])
#                 class_name = class_names[class_id].lower()
#                 confidence = float(box.conf[0])
#                 details += f"πŸ”Ž {class_name} - {confidence*100:.2f}%\n"

#                 if class_name in HUMAN_CLASSES:
#                     found_human = True
#                 else:
#                     found_disease = True

#         if found_human:
#             disease_status = "🚨 Human Detected (Invalid Input)"
#             alert_sound = "disease_alert.mp3"
#         elif found_disease:
#             disease_status = "🚨 Disease Detected"
#             alert_sound = "disease_alert.mp3"
#         else:
#             disease_status = "βœ… No Disease Detected"

#     except Exception as e:
#         image_status = "❌ Error"
#         disease_status = "⚠️ Detection Failed"
#         details = str(e)

#     return image_status, disease_status, details, alert_sound

# # Gradio Interface
# with gr.Blocks(title="🚨 AgroScan - Human Alert + Disease Detection") as demo:
#     gr.Markdown("""
#     <h1 style="text-align:center; color:#2e7d32;">🌿 AgroScan</h1>
#     <p style="text-align:center;">
#         Upload an image of a plant leaf. If a human or disease is detected, an alert will be triggered with sound 🚨.
#     </p>
#     """)

#     with gr.Row():
#         with gr.Column(scale=1):
#             image_input = gr.Image(type="pil", label="πŸ“· Upload Image")
#             submit_btn = gr.Button("πŸ” Analyze")
#         with gr.Column(scale=1):
#             result1 = gr.Textbox(label="πŸ–ΌοΈ Image Status")
#             result2 = gr.Textbox(label="🌱 Disease Status")
#             result3 = gr.Textbox(label="πŸ“‹ Detection Details", lines=5)
#             audio_out = gr.Audio(label="🚨 Alert Sound", autoplay=True)

#     submit_btn.click(fn=predict, inputs=image_input,
#                      outputs=[result1, result2, result3, audio_out])

# demo.launch()




# from ultralytics import YOLO
# import gradio as gr
# import numpy as np
# from PIL import Image

# # Load YOLO model
# model = YOLO("best.pt")

# # Define what class names indicate a human
# HUMAN_CLASSES = ["person", "human"]

# # Predict Function
# def predict(image):
#     image_status = "βœ… Real Image"
#     disease_status = "βœ… No Disease Detected"
#     details = ""
#     alert_sound = None  # path to MP3 file

#     try:
#         results = model(image)
#         boxes = results[0].boxes
#         class_names = model.names

#         found_human = False
#         found_disease = False

#         if len(boxes) > 0:
#             for box in boxes:
#                 class_id = int(box.cls[0])
#                 class_name = class_names[class_id].lower()
#                 confidence = float(box.conf[0])
#                 details += f"πŸ”Ž {class_name} - {confidence*100:.2f}%\n"

#                 if class_name in HUMAN_CLASSES:
#                     found_human = True
#                 else:
#                     found_disease = True

#         if found_human:
#             disease_status = "🚨 Human Detected (Invalid Input)"
#             alert_sound = "disease_alert.mp3"
#         elif found_disease:
#             disease_status = "🚨 Disease Detected"
#             alert_sound = "disease_alert.mp3"
#         else:
#             disease_status = "βœ… No Disease Detected"

#     except Exception as e:
#         image_status = "❌ Error"
#         disease_status = "⚠️ Detection Failed"
#         details = str(e)

#     return image_status, disease_status, details, alert_sound

# # Gradio Interface
# with gr.Blocks(title="🚨 AgroScan - Human Alert + Disease Detection") as demo:
#     gr.Markdown("""
#     <h1 style="text-align:center; color:#2e7d32;">🌿 AgroScan</h1>
#     <p style="text-align:center;">
#         Upload an image of a plant leaf. If a human or disease is detected, an alert will be triggered with sound 🚨.
#     </p>
#     """)

#     with gr.Row():
#         with gr.Column(scale=1):
#             image_input = gr.Image(type="pil", label="πŸ“· Upload Image")
#             submit_btn = gr.Button("πŸ” Analyze")
#         with gr.Column(scale=1):
#             result1 = gr.Textbox(label="πŸ–ΌοΈ Image Status")
#             result2 = gr.Textbox(label="🌱 Disease Status")
#             result3 = gr.Textbox(label="πŸ“‹ Detection Details", lines=5)
#             audio_out = gr.Audio(label="🚨 Alert Sound", autoplay=True)

#     submit_btn.click(fn=predict, inputs=image_input,
#                      outputs=[result1, result2, result3, audio_out])

# demo.launch()





# from ultralytics import YOLO
# import gradio as gr
# import numpy as np
# from PIL import Image

# # Load the trained YOLOv8 model
# model = YOLO("best.pt")

# # Class name that represents "human" in your YOLO model
# HUMAN_CLASS_NAMES = ["person", "human"]

# # Prediction function with sound logic
# def predict(image):
#     image_status = "βœ… Real Image"
#     disease_status = "βœ… No Disease Detected"
#     disease_details = ""
#     play_alert = None  # MP3 to be played

#     try:
#         results = model(image)
#         boxes = results[0].boxes
#         names = model.names

#         found_human = False
#         if len(boxes) > 0:
#             for box in boxes:
#                 class_id = int(box.cls[0])
#                 class_name = names[class_id]
#                 confidence = float(box.conf[0])
#                 disease_details += f"πŸ” {class_name} - {confidence*100:.2f}%\n"

#                 if class_name.lower() in HUMAN_CLASS_NAMES:
#                     found_human = True

#         if found_human:
#             disease_status = "🚨 Disease Detected (Human Image)"
#             play_alert = "disease_alert.mp3"  # make sure this file exists
#         elif len(boxes) == 0:
#             disease_status = "βœ… No Disease Detected"
#         else:
#             disease_status = "🚨 Disease Detected"
#             play_alert = "disease_alert.mp3"

#     except Exception as e:
#         disease_status = "❌ Error during detection"
#         disease_details = str(e)

#     return image_status, disease_status, disease_details, play_alert

# # Gradio UI
# with gr.Blocks(title="AgroScan - Human Alert + Disease Detection") as demo:
#     gr.Markdown("""
#     <div style="text-align: center;">
#         <h1 style="color: #2e7d32;">🌿 AgroScan: Plant Disease Detector + Human Alert</h1>
#         <p style="font-size: 16px; color: #555;">
#             Upload an image of a leaf or a human. If human is detected, an alert will be triggered.
#         </p>
#     </div>
#     """)

#     with gr.Row():
#         with gr.Column(scale=1):
#             image_input = gr.Image(type="pil", label="πŸ“· Upload Image")
#             submit_btn = gr.Button("πŸ” Analyze")
#         with gr.Column(scale=1):
#             image_result = gr.Textbox(label="πŸ–ΌοΈ Image Authenticity", interactive=False)
#             disease_result = gr.Textbox(label="🌱 Disease Status", interactive=False)
#             detail = gr.Textbox(label="πŸ“‹ Details", lines=5, interactive=False)
#             sound_output = gr.Audio(label="🚨 Alert Sound", autoplay=True, interactive=False)

#     submit_btn.click(fn=predict, inputs=image_input,
#                      outputs=[image_result, disease_result, detail, sound_output])

# demo.launch()




# from ultralytics import YOLO
# import gradio as gr
# import numpy as np
# from PIL import Image

# # Load the trained YOLOv8 model
# model = YOLO("best.pt")  # Make sure 'best.pt' is in the same directory

# # Check if image is real (simple check using NumPy array and format)
# def is_real_image(image):
#     try:
#         if image is None:
#             return False
#         arr = np.array(image)
#         if arr.ndim == 3 and arr.shape[2] in [3, 4]:  # RGB or RGBA
#             return True
#         return False
#     except Exception as e:
#         print(f"Image check error: {e}")
#         return False

# # Prediction function
# def predict(image):
#     image_status = "❌ Fake Image"
#     disease_status = "⚠️ Unknown"
#     disease_details = ""

#     # Step 1: Image authenticity check
#     if is_real_image(image):
#         image_status = "βœ… Real Image"
#     else:
#         return image_status, "⚠️ Cannot detect disease in a fake image.", ""

#     # Step 2: YOLOv8 disease detection
#     try:
#         results = model(image)
#         boxes = results[0].boxes
#         names = model.names

#         if len(boxes) == 0:
#             disease_status = "βœ… No Disease Detected"
#         else:
#             disease_status = "🚨 Disease Detected"
#             for box in boxes:
#                 class_id = int(box.cls[0])
#                 class_name = names[class_id]
#                 confidence = float(box.conf[0])
#                 disease_details += f"πŸ”¬ {class_name} - Confidence: {confidence*100:.2f}%\n"
#     except Exception as e:
#         disease_status = "❌ Error during detection"
#         disease_details = str(e)

#     return image_status, disease_status, disease_details

# # Gradio UI
# with gr.Blocks(title="AgroScan - Plant Disease & Image Verifier") as demo:
#     gr.Markdown("""
#     <div style="text-align: center;">
#         <h1 style="color: #2e7d32;">🌿 AgroScan: Plant Disease Detector + Image Validator</h1>
#         <p style="font-size: 16px; color: #555;">
#             Upload a plant leaf image πŸƒ to check if it's real or fake and detect any diseases using YOLOv8.
#         </p>
#     </div>
#     """)

#     with gr.Row():
#         with gr.Column(scale=1):
#             image_input = gr.Image(type="pil", label="πŸ“· Upload Leaf Image")
#             submit_btn = gr.Button("πŸ” Analyze")
#         with gr.Column(scale=1):
#             image_result = gr.Textbox(label="πŸ–ΌοΈ Image Authenticity", interactive=False)
#             disease_result = gr.Textbox(label="🌱 Disease Status", interactive=False)
#             detail = gr.Textbox(label="πŸ“‹ Detailed Diagnosis", lines=5, interactive=False)

#     with gr.Accordion("ℹ️ What is AgroScan?", open=False):
#         gr.Markdown("""
#         AgroScan is an AI-powered detector for identifying plant diseases from leaf images. 
#         It also verifies whether the image is genuine (real leaf image) or fake to avoid misdiagnosis. 
#         Designed to support farmers, agronomists, and researchers for better crop care.
#         """)

#     submit_btn.click(fn=predict, inputs=image_input,
#                      outputs=[image_result, disease_result, detail])

# demo.launch()





# from ultralytics import YOLO
# import gradio as gr
# from PIL import Image

# # Load YOLO model
# model = YOLO("best.pt")  # Make sure 'best.pt' is in your directory

# # Function to check if image is real
# def is_real_image(img):
#     try:
#         return isinstance(img, Image.Image) and img.mode in ['RGB', 'RGBA'] and img.size[0] > 50 and img.size[1] > 50
#     except:
#         return False

# # Main prediction function with error handling
# def predict(image):
#     try:
#         if image is None:
#             return "❌ No image provided", "⚠️ Cannot check disease", "Upload a valid image first."

#         # Step 1: Check image authenticity
#         if is_real_image(image):
#             image_status = "βœ… Real Image"
#         else:
#             return "❌ Fake Image", "⚠️ Cannot check disease", "Image doesn't appear real. Try another image."

#         # Step 2: Predict with YOLO model
#         results = model(image)
#         names = model.names
#         boxes = results[0].boxes

#         if len(boxes) == 0:
#             return image_status, "βœ… No Disease Detected", "No signs of disease found."
        
#         diagnosis = ""
#         disease_found = False
#         for box in boxes:
#             conf = float(box.conf[0])
#             if conf > 0.5:
#                 cls_id = int(box.cls[0])
#                 disease_name = names[cls_id]
#                 diagnosis += f"πŸ”¬ {disease_name} - Confidence: {conf*100:.2f}%\n"
#                 disease_found = True
        
#         if disease_found:
#             return image_status, "🚨 Disease Detected", diagnosis
#         else:
#             return image_status, "βœ… No Disease Detected", "No confident detections."

#     except Exception as e:
#         # Handle unexpected errors gracefully
#         return "❌ Error", "❌ Error", f"An error occurred: {str(e)}"

# # Gradio Interface
# with gr.Blocks(title="AgroScan - Plant Disease & Image Verifier") as demo:
#     gr.Markdown("## 🌿 AgroScan: Plant Disease Detector + Image Validator")

#     with gr.Row():
#         with gr.Column():
#             image_input = gr.Image(type="pil", label="πŸ“· Upload Plant Leaf Image")
#             submit_btn = gr.Button("πŸ” Analyze")
#         with gr.Column():
#             image_result = gr.Textbox(label="πŸ–ΌοΈ Image Authenticity", interactive=False)
#             disease_result = gr.Textbox(label="🌱 Disease Status", interactive=False)
#             detail = gr.Textbox(label="πŸ“‹ Detailed Diagnosis", lines=5, interactive=False)

#     submit_btn.click(fn=predict, inputs=image_input, outputs=[image_result, disease_result, detail])

# demo.launch()







# from ultralytics import YOLO
# import gradio as gr
# from PIL import Image
# import imghdr
# import os

# # Load YOLOv5 model
# model = YOLO("best.pt")  # Ensure your model file 'best.pt' is in the same directory

# # Check if image is real or fake (basic format check)
# def is_real_image(image):
#     try:
#         if image is None:
#             return False
#         format_check = imghdr.what(image.fp.name)
#         return format_check in ['jpeg', 'png']
#     except:
#         return False

# # Prediction function
# def predict(image):
#     image_status = "❌ Fake Image"
#     disease_status = "⚠️ Unknown"
#     disease_details = ""

#     # Step 1: Check if image is real
#     if is_real_image(image):
#         image_status = "βœ… Real Image"
#     else:
#         return image_status, "⚠️ Cannot detect disease in a fake image.", ""

#     # Step 2: Run disease detection
#     results = model(image)
#     boxes = results[0].boxes
#     names = model.names

#     if len(boxes) == 0:
#         disease_status = "βœ… No Disease Detected"
#     else:
#         disease_status = "🚨 Disease Detected"
#         for box in boxes:
#             class_id = int(box.cls[0])
#             class_name = names[class_id]
#             confidence = float(box.conf[0])
#             disease_details += f"πŸ”¬ {class_name} - Confidence: {confidence*100:.2f}%\n"

#     return image_status, disease_status, disease_details

# # UI using Gradio Blocks
# with gr.Blocks(title="AgroScan - Plant Disease & Image Verifier") as demo:
#     gr.Markdown("""
#     <div style="text-align: center;">
#         <h1 style="color: #2e7d32;">🌿 AgroScan: Plant Disease Detector + Image Validator</h1>
#         <p style="font-size: 16px; color: #555;">
#             Upload a plant leaf image πŸƒ to check if it's real or fake and detect any diseases using YOLOv5.
#         </p>
#     </div>
#     """)

#     with gr.Row():
#         with gr.Column(scale=1):
#             image_input = gr.Image(type="pil", label="πŸ“· Upload Leaf Image")
#             submit_btn = gr.Button("πŸ” Analyze")
#         with gr.Column(scale=1):
#             image_result = gr.Textbox(label="πŸ–ΌοΈ Image Authenticity", interactive=False)
#             disease_result = gr.Textbox(label="🌱 Disease Status", interactive=False)
#             detail = gr.Textbox(label="πŸ“‹ Detailed Diagnosis", lines=5, interactive=False)

#     with gr.Accordion("ℹ️ What is AgroScan?", open=False):
#         gr.Markdown("""
#         AgroScan is an AI-powered detector for identifying plant diseases from leaf images. 
#         It also verifies whether the image is genuine (real leaf image) or fake to avoid misdiagnosis. 
#         Designed to support farmers, agronomists, and researchers for better crop care.
#         """)

#     submit_btn.click(fn=predict, inputs=image_input,
#                      outputs=[image_result, disease_result, detail])

# demo.launch()







# from ultralytics import YOLO
# import gradio as gr
# from PIL import Image

# # Load YOLOv5 model
# model = YOLO("best.pt")  # Make sure this file exists in your Hugging Face Space

# # Prediction function
# def predict(image):
#     results = model(image)
#     boxes = results[0].boxes
#     names = model.names
#     output = ""

#     if len(boxes) == 0:
#         output = "βœ… Healthy: No disease detected!"
#     else:
#         for box in boxes:
#             class_id = int(box.cls[0])
#             class_name = names[class_id]
#             confidence = float(box.conf[0])
#             output += f"🚨 Detected: {class_name} ({confidence*100:.2f}%)\n"
#     return output

# # Gradio UI using Blocks
# with gr.Blocks(title="AgroScan - Plant Disease Detector") as demo:
#     gr.Markdown("""
#     <div style="text-align: center;">
#         <h1 style="color: #2e7d32;">🌿 AgroScan: Plant Disease Detector</h1>
#         <p style="font-size: 16px; color: #555;">
#             Upload a high-quality image of a plant leaf πŸƒ and detect possible diseases using AI-powered YOLOv5.
#         </p>
#     </div>
#     """)
    
#     with gr.Row():
#         with gr.Column(scale=1):
#             image_input = gr.Image(type="pil", label="πŸ“· Upload Leaf Image")
#             predict_button = gr.Button("πŸ” Analyze Leaf", variant="primary")
#         with gr.Column(scale=1):
#             result_output = gr.Textbox(label="🩺 Diagnosis Result", lines=6)

#     with gr.Accordion("ℹ️ About AgroScan", open=False):
#         gr.Markdown("""
#         **AgroScan** is an intelligent plant disease detector built with **YOLOv5** and trained on custom agricultural datasets. 
#         It helps farmers, researchers, and agriculturists in early detection of plant diseases to ensure timely treatment and improved crop yield. 🌱
#         """)

#     predict_button.click(fn=predict, inputs=image_input, outputs=result_output)

# demo.launch()






# from ultralytics import YOLO
# import gradio as gr
# from PIL import Image
# import torch

# # Load YOLOv5 model
# model = YOLO("best.pt")  # assumes model is in the same directory

# # Prediction function
# def predict(image):
#     results = model(image)
#     boxes = results[0].boxes
#     names = model.names
#     output = ""

#     if len(boxes) == 0:
#         output = "βœ… Healthy: No disease detected!"
#     else:
#         for box in boxes:
#             class_id = int(box.cls[0])
#             class_name = names[class_id]
#             confidence = float(box.conf[0])
#             output += f"🚨 Detected: {class_name} ({confidence*100:.2f}%)\n"

#     return output

# # Gradio UI
# gr.Interface(
#     fn=predict,
#     inputs=gr.Image(type="pil"),
#     outputs="text",
#     title="🌿 AgroScan: Plant Disease Detector",
#     description="Upload a plant leaf image to detect disease using a YOLOv5 model.",
# ).launch()