Spaces:
Running
Running
File size: 22,579 Bytes
62547ed 12d776a 62547ed 12d776a 62547ed 12d776a 4f88f01 12d776a 62547ed 12d776a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 |
from ultralytics import YOLO
import gradio as gr
import numpy as np
from PIL import Image
# Load YOLO model
model = YOLO("best.pt")
# Define what class names indicate a human
HUMAN_CLASSES = ["person", "human"]
# Predict Function
def predict(image):
image_status = "β
Real Image"
disease_status = "β
No Disease Detected"
details = ""
audio_html = "alert-1.mp3" # for autoplay sound
try:
results = model(image)
boxes = results[0].boxes
class_names = model.names
found_human = False
found_disease = False
if len(boxes) > 0:
for box in boxes:
class_id = int(box.cls[0])
class_name = class_names[class_id].lower()
confidence = float(box.conf[0])
details += f"π {class_name} - {confidence*100:.2f}%\n"
if class_name in HUMAN_CLASSES:
found_human = True
else:
found_disease = True
if found_human:
disease_status = "π¨ Human Detected (Invalid Input)"
audio_html = """<audio autoplay><source src="file/disease_alert.mp3" type="audio/mpeg"></audio>"""
elif found_disease:
disease_status = "π¨ Disease Detected"
audio_html = """<audio autoplay><source src="file/disease_alert.mp3" type="audio/mpeg"></audio>"""
else:
disease_status = "β
No Disease Detected"
except Exception as e:
image_status = "β Error"
disease_status = "β οΈ Detection Failed"
details = str(e)
return image_status, disease_status, details, audio_html
# Gradio Interface
with gr.Blocks(title="π¨ AgroScan - Human Alert + Disease Detection") as demo:
gr.Markdown("""
<h1 style="text-align:center; color:#2e7d32;">πΏ AgroScan</h1>
<p style="text-align:center;">
Upload an image of a plant leaf. If a human or disease is detected, an alert will be triggered with sound π¨.
</p>
""")
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(type="pil", label="π· Upload Image")
submit_btn = gr.Button("π Analyze")
with gr.Column(scale=1):
result1 = gr.Textbox(label="πΌοΈ Image Status")
result2 = gr.Textbox(label="π± Disease Status")
result3 = gr.Textbox(label="π Detection Details", lines=5)
audio_out = gr.HTML(label="π¨ Auto Alert") # autoplay sound (no controls)
submit_btn.click(fn=predict, inputs=image_input,
outputs=[result1, result2, result3, audio_out])
demo.launch()
# from ultralytics import YOLO
# import gradio as gr
# import numpy as np
# from PIL import Image
# # Load YOLO model
# model = YOLO("best.pt")
# # Define human classes
# HUMAN_CLASSES = ["person", "human"]
# # Prediction function
# def predict(image):
# image_status = "β
Real Image"
# disease_status = "β
No Disease Detected"
# details = ""
# alert_sound = "alert-1.mp3" # Will hold sound file path
# try:
# results = model(image)
# boxes = results[0].boxes
# class_names = model.names
# found_human = False
# found_disease = False
# if len(boxes) > 0:
# for box in boxes:
# class_id = int(box.cls[0])
# class_name = class_names[class_id].lower()
# confidence = float(box.conf[0])
# details += f"π {class_name} - {confidence*100:.2f}%\n"
# if class_name in HUMAN_CLASSES:
# found_human = True
# else:
# found_disease = True
# if found_human:
# disease_status = "π¨ Human Detected (Invalid Input)"
# alert_sound = "disease_alert.mp3"
# elif found_disease:
# disease_status = "π¨ Disease Detected"
# alert_sound = "disease_alert.mp3"
# else:
# disease_status = "β
No Disease Detected"
# except Exception as e:
# image_status = "β Error"
# disease_status = "β οΈ Detection Failed"
# details = str(e)
# return image_status, disease_status, details, alert_sound
# # Gradio Interface
# with gr.Blocks(title="π¨ AgroScan - Human Alert + Disease Detection") as demo:
# gr.Markdown("""
# <h1 style="text-align:center; color:#2e7d32;">πΏ AgroScan</h1>
# <p style="text-align:center;">
# Upload an image of a plant leaf. If a human or disease is detected, an alert will be triggered with sound π¨.
# </p>
# """)
# with gr.Row():
# with gr.Column(scale=1):
# image_input = gr.Image(type="pil", label="π· Upload Image")
# submit_btn = gr.Button("π Analyze")
# with gr.Column(scale=1):
# result1 = gr.Textbox(label="πΌοΈ Image Status")
# result2 = gr.Textbox(label="π± Disease Status")
# result3 = gr.Textbox(label="π Detection Details", lines=5)
# audio_out = gr.Audio(label="π¨ Alert Sound", autoplay=True)
# submit_btn.click(fn=predict, inputs=image_input,
# outputs=[result1, result2, result3, audio_out])
# demo.launch()
# from ultralytics import YOLO
# import gradio as gr
# import numpy as np
# from PIL import Image
# # Load YOLO model
# model = YOLO("best.pt")
# # Define what class names indicate a human
# HUMAN_CLASSES = ["person", "human"]
# # Predict Function
# def predict(image):
# image_status = "β
Real Image"
# disease_status = "β
No Disease Detected"
# details = ""
# alert_sound = None # path to MP3 file
# try:
# results = model(image)
# boxes = results[0].boxes
# class_names = model.names
# found_human = False
# found_disease = False
# if len(boxes) > 0:
# for box in boxes:
# class_id = int(box.cls[0])
# class_name = class_names[class_id].lower()
# confidence = float(box.conf[0])
# details += f"π {class_name} - {confidence*100:.2f}%\n"
# if class_name in HUMAN_CLASSES:
# found_human = True
# else:
# found_disease = True
# if found_human:
# disease_status = "π¨ Human Detected (Invalid Input)"
# alert_sound = "disease_alert.mp3"
# elif found_disease:
# disease_status = "π¨ Disease Detected"
# alert_sound = "disease_alert.mp3"
# else:
# disease_status = "β
No Disease Detected"
# except Exception as e:
# image_status = "β Error"
# disease_status = "β οΈ Detection Failed"
# details = str(e)
# return image_status, disease_status, details, alert_sound
# # Gradio Interface
# with gr.Blocks(title="π¨ AgroScan - Human Alert + Disease Detection") as demo:
# gr.Markdown("""
# <h1 style="text-align:center; color:#2e7d32;">πΏ AgroScan</h1>
# <p style="text-align:center;">
# Upload an image of a plant leaf. If a human or disease is detected, an alert will be triggered with sound π¨.
# </p>
# """)
# with gr.Row():
# with gr.Column(scale=1):
# image_input = gr.Image(type="pil", label="π· Upload Image")
# submit_btn = gr.Button("π Analyze")
# with gr.Column(scale=1):
# result1 = gr.Textbox(label="πΌοΈ Image Status")
# result2 = gr.Textbox(label="π± Disease Status")
# result3 = gr.Textbox(label="π Detection Details", lines=5)
# audio_out = gr.Audio(label="π¨ Alert Sound", autoplay=True)
# submit_btn.click(fn=predict, inputs=image_input,
# outputs=[result1, result2, result3, audio_out])
# demo.launch()
# from ultralytics import YOLO
# import gradio as gr
# import numpy as np
# from PIL import Image
# # Load the trained YOLOv8 model
# model = YOLO("best.pt")
# # Class name that represents "human" in your YOLO model
# HUMAN_CLASS_NAMES = ["person", "human"]
# # Prediction function with sound logic
# def predict(image):
# image_status = "β
Real Image"
# disease_status = "β
No Disease Detected"
# disease_details = ""
# play_alert = None # MP3 to be played
# try:
# results = model(image)
# boxes = results[0].boxes
# names = model.names
# found_human = False
# if len(boxes) > 0:
# for box in boxes:
# class_id = int(box.cls[0])
# class_name = names[class_id]
# confidence = float(box.conf[0])
# disease_details += f"π {class_name} - {confidence*100:.2f}%\n"
# if class_name.lower() in HUMAN_CLASS_NAMES:
# found_human = True
# if found_human:
# disease_status = "π¨ Disease Detected (Human Image)"
# play_alert = "disease_alert.mp3" # make sure this file exists
# elif len(boxes) == 0:
# disease_status = "β
No Disease Detected"
# else:
# disease_status = "π¨ Disease Detected"
# play_alert = "disease_alert.mp3"
# except Exception as e:
# disease_status = "β Error during detection"
# disease_details = str(e)
# return image_status, disease_status, disease_details, play_alert
# # Gradio UI
# with gr.Blocks(title="AgroScan - Human Alert + Disease Detection") as demo:
# gr.Markdown("""
# <div style="text-align: center;">
# <h1 style="color: #2e7d32;">πΏ AgroScan: Plant Disease Detector + Human Alert</h1>
# <p style="font-size: 16px; color: #555;">
# Upload an image of a leaf or a human. If human is detected, an alert will be triggered.
# </p>
# </div>
# """)
# with gr.Row():
# with gr.Column(scale=1):
# image_input = gr.Image(type="pil", label="π· Upload Image")
# submit_btn = gr.Button("π Analyze")
# with gr.Column(scale=1):
# image_result = gr.Textbox(label="πΌοΈ Image Authenticity", interactive=False)
# disease_result = gr.Textbox(label="π± Disease Status", interactive=False)
# detail = gr.Textbox(label="π Details", lines=5, interactive=False)
# sound_output = gr.Audio(label="π¨ Alert Sound", autoplay=True, interactive=False)
# submit_btn.click(fn=predict, inputs=image_input,
# outputs=[image_result, disease_result, detail, sound_output])
# demo.launch()
# from ultralytics import YOLO
# import gradio as gr
# import numpy as np
# from PIL import Image
# # Load the trained YOLOv8 model
# model = YOLO("best.pt") # Make sure 'best.pt' is in the same directory
# # Check if image is real (simple check using NumPy array and format)
# def is_real_image(image):
# try:
# if image is None:
# return False
# arr = np.array(image)
# if arr.ndim == 3 and arr.shape[2] in [3, 4]: # RGB or RGBA
# return True
# return False
# except Exception as e:
# print(f"Image check error: {e}")
# return False
# # Prediction function
# def predict(image):
# image_status = "β Fake Image"
# disease_status = "β οΈ Unknown"
# disease_details = ""
# # Step 1: Image authenticity check
# if is_real_image(image):
# image_status = "β
Real Image"
# else:
# return image_status, "β οΈ Cannot detect disease in a fake image.", ""
# # Step 2: YOLOv8 disease detection
# try:
# results = model(image)
# boxes = results[0].boxes
# names = model.names
# if len(boxes) == 0:
# disease_status = "β
No Disease Detected"
# else:
# disease_status = "π¨ Disease Detected"
# for box in boxes:
# class_id = int(box.cls[0])
# class_name = names[class_id]
# confidence = float(box.conf[0])
# disease_details += f"π¬ {class_name} - Confidence: {confidence*100:.2f}%\n"
# except Exception as e:
# disease_status = "β Error during detection"
# disease_details = str(e)
# return image_status, disease_status, disease_details
# # Gradio UI
# with gr.Blocks(title="AgroScan - Plant Disease & Image Verifier") as demo:
# gr.Markdown("""
# <div style="text-align: center;">
# <h1 style="color: #2e7d32;">πΏ AgroScan: Plant Disease Detector + Image Validator</h1>
# <p style="font-size: 16px; color: #555;">
# Upload a plant leaf image π to check if it's real or fake and detect any diseases using YOLOv8.
# </p>
# </div>
# """)
# with gr.Row():
# with gr.Column(scale=1):
# image_input = gr.Image(type="pil", label="π· Upload Leaf Image")
# submit_btn = gr.Button("π Analyze")
# with gr.Column(scale=1):
# image_result = gr.Textbox(label="πΌοΈ Image Authenticity", interactive=False)
# disease_result = gr.Textbox(label="π± Disease Status", interactive=False)
# detail = gr.Textbox(label="π Detailed Diagnosis", lines=5, interactive=False)
# with gr.Accordion("βΉοΈ What is AgroScan?", open=False):
# gr.Markdown("""
# AgroScan is an AI-powered detector for identifying plant diseases from leaf images.
# It also verifies whether the image is genuine (real leaf image) or fake to avoid misdiagnosis.
# Designed to support farmers, agronomists, and researchers for better crop care.
# """)
# submit_btn.click(fn=predict, inputs=image_input,
# outputs=[image_result, disease_result, detail])
# demo.launch()
# from ultralytics import YOLO
# import gradio as gr
# from PIL import Image
# # Load YOLO model
# model = YOLO("best.pt") # Make sure 'best.pt' is in your directory
# # Function to check if image is real
# def is_real_image(img):
# try:
# return isinstance(img, Image.Image) and img.mode in ['RGB', 'RGBA'] and img.size[0] > 50 and img.size[1] > 50
# except:
# return False
# # Main prediction function with error handling
# def predict(image):
# try:
# if image is None:
# return "β No image provided", "β οΈ Cannot check disease", "Upload a valid image first."
# # Step 1: Check image authenticity
# if is_real_image(image):
# image_status = "β
Real Image"
# else:
# return "β Fake Image", "β οΈ Cannot check disease", "Image doesn't appear real. Try another image."
# # Step 2: Predict with YOLO model
# results = model(image)
# names = model.names
# boxes = results[0].boxes
# if len(boxes) == 0:
# return image_status, "β
No Disease Detected", "No signs of disease found."
# diagnosis = ""
# disease_found = False
# for box in boxes:
# conf = float(box.conf[0])
# if conf > 0.5:
# cls_id = int(box.cls[0])
# disease_name = names[cls_id]
# diagnosis += f"π¬ {disease_name} - Confidence: {conf*100:.2f}%\n"
# disease_found = True
# if disease_found:
# return image_status, "π¨ Disease Detected", diagnosis
# else:
# return image_status, "β
No Disease Detected", "No confident detections."
# except Exception as e:
# # Handle unexpected errors gracefully
# return "β Error", "β Error", f"An error occurred: {str(e)}"
# # Gradio Interface
# with gr.Blocks(title="AgroScan - Plant Disease & Image Verifier") as demo:
# gr.Markdown("## πΏ AgroScan: Plant Disease Detector + Image Validator")
# with gr.Row():
# with gr.Column():
# image_input = gr.Image(type="pil", label="π· Upload Plant Leaf Image")
# submit_btn = gr.Button("π Analyze")
# with gr.Column():
# image_result = gr.Textbox(label="πΌοΈ Image Authenticity", interactive=False)
# disease_result = gr.Textbox(label="π± Disease Status", interactive=False)
# detail = gr.Textbox(label="π Detailed Diagnosis", lines=5, interactive=False)
# submit_btn.click(fn=predict, inputs=image_input, outputs=[image_result, disease_result, detail])
# demo.launch()
# from ultralytics import YOLO
# import gradio as gr
# from PIL import Image
# import imghdr
# import os
# # Load YOLOv5 model
# model = YOLO("best.pt") # Ensure your model file 'best.pt' is in the same directory
# # Check if image is real or fake (basic format check)
# def is_real_image(image):
# try:
# if image is None:
# return False
# format_check = imghdr.what(image.fp.name)
# return format_check in ['jpeg', 'png']
# except:
# return False
# # Prediction function
# def predict(image):
# image_status = "β Fake Image"
# disease_status = "β οΈ Unknown"
# disease_details = ""
# # Step 1: Check if image is real
# if is_real_image(image):
# image_status = "β
Real Image"
# else:
# return image_status, "β οΈ Cannot detect disease in a fake image.", ""
# # Step 2: Run disease detection
# results = model(image)
# boxes = results[0].boxes
# names = model.names
# if len(boxes) == 0:
# disease_status = "β
No Disease Detected"
# else:
# disease_status = "π¨ Disease Detected"
# for box in boxes:
# class_id = int(box.cls[0])
# class_name = names[class_id]
# confidence = float(box.conf[0])
# disease_details += f"π¬ {class_name} - Confidence: {confidence*100:.2f}%\n"
# return image_status, disease_status, disease_details
# # UI using Gradio Blocks
# with gr.Blocks(title="AgroScan - Plant Disease & Image Verifier") as demo:
# gr.Markdown("""
# <div style="text-align: center;">
# <h1 style="color: #2e7d32;">πΏ AgroScan: Plant Disease Detector + Image Validator</h1>
# <p style="font-size: 16px; color: #555;">
# Upload a plant leaf image π to check if it's real or fake and detect any diseases using YOLOv5.
# </p>
# </div>
# """)
# with gr.Row():
# with gr.Column(scale=1):
# image_input = gr.Image(type="pil", label="π· Upload Leaf Image")
# submit_btn = gr.Button("π Analyze")
# with gr.Column(scale=1):
# image_result = gr.Textbox(label="πΌοΈ Image Authenticity", interactive=False)
# disease_result = gr.Textbox(label="π± Disease Status", interactive=False)
# detail = gr.Textbox(label="π Detailed Diagnosis", lines=5, interactive=False)
# with gr.Accordion("βΉοΈ What is AgroScan?", open=False):
# gr.Markdown("""
# AgroScan is an AI-powered detector for identifying plant diseases from leaf images.
# It also verifies whether the image is genuine (real leaf image) or fake to avoid misdiagnosis.
# Designed to support farmers, agronomists, and researchers for better crop care.
# """)
# submit_btn.click(fn=predict, inputs=image_input,
# outputs=[image_result, disease_result, detail])
# demo.launch()
# from ultralytics import YOLO
# import gradio as gr
# from PIL import Image
# # Load YOLOv5 model
# model = YOLO("best.pt") # Make sure this file exists in your Hugging Face Space
# # Prediction function
# def predict(image):
# results = model(image)
# boxes = results[0].boxes
# names = model.names
# output = ""
# if len(boxes) == 0:
# output = "β
Healthy: No disease detected!"
# else:
# for box in boxes:
# class_id = int(box.cls[0])
# class_name = names[class_id]
# confidence = float(box.conf[0])
# output += f"π¨ Detected: {class_name} ({confidence*100:.2f}%)\n"
# return output
# # Gradio UI using Blocks
# with gr.Blocks(title="AgroScan - Plant Disease Detector") as demo:
# gr.Markdown("""
# <div style="text-align: center;">
# <h1 style="color: #2e7d32;">πΏ AgroScan: Plant Disease Detector</h1>
# <p style="font-size: 16px; color: #555;">
# Upload a high-quality image of a plant leaf π and detect possible diseases using AI-powered YOLOv5.
# </p>
# </div>
# """)
# with gr.Row():
# with gr.Column(scale=1):
# image_input = gr.Image(type="pil", label="π· Upload Leaf Image")
# predict_button = gr.Button("π Analyze Leaf", variant="primary")
# with gr.Column(scale=1):
# result_output = gr.Textbox(label="π©Ί Diagnosis Result", lines=6)
# with gr.Accordion("βΉοΈ About AgroScan", open=False):
# gr.Markdown("""
# **AgroScan** is an intelligent plant disease detector built with **YOLOv5** and trained on custom agricultural datasets.
# It helps farmers, researchers, and agriculturists in early detection of plant diseases to ensure timely treatment and improved crop yield. π±
# """)
# predict_button.click(fn=predict, inputs=image_input, outputs=result_output)
# demo.launch()
# from ultralytics import YOLO
# import gradio as gr
# from PIL import Image
# import torch
# # Load YOLOv5 model
# model = YOLO("best.pt") # assumes model is in the same directory
# # Prediction function
# def predict(image):
# results = model(image)
# boxes = results[0].boxes
# names = model.names
# output = ""
# if len(boxes) == 0:
# output = "β
Healthy: No disease detected!"
# else:
# for box in boxes:
# class_id = int(box.cls[0])
# class_name = names[class_id]
# confidence = float(box.conf[0])
# output += f"π¨ Detected: {class_name} ({confidence*100:.2f}%)\n"
# return output
# # Gradio UI
# gr.Interface(
# fn=predict,
# inputs=gr.Image(type="pil"),
# outputs="text",
# title="πΏ AgroScan: Plant Disease Detector",
# description="Upload a plant leaf image to detect disease using a YOLOv5 model.",
# ).launch() |