isana25's picture
Update app.py
1e635e1 verified
raw
history blame contribute delete
900 Bytes
import gradio as gr
import tensorflow as tf
import numpy as np
from PIL import Image
import json
# Load model and class names JSON
model = tf.keras.models.load_model("animal_classifier.keras")
with open("class_names.json", "r") as f:
class_names = json.load(f)
def predict_image(image):
img = image.resize((224, 224))
img_array = np.array(img) / 255.0
img_array = np.expand_dims(img_array, axis=0)
preds = model.predict(img_array)
confidence = np.max(preds)
predicted_index = np.argmax(preds)
threshold = 0.5 # minimum confidence to accept prediction
if confidence < threshold:
return "Image not recognized as any animal in the dataset"
else:
return class_names[predicted_index]
demo = gr.Interface(fn=predict_image, inputs=gr.Image(type="pil"), outputs="text",
title="MobileNetV2 Animal Classifier")
demo.launch()