Spaces:
Sleeping
Sleeping
import gradio as gr | |
import tensorflow as tf | |
import numpy as np | |
from PIL import Image | |
import json | |
# Load model and class names JSON | |
model = tf.keras.models.load_model("animal_classifier.keras") | |
with open("class_names.json", "r") as f: | |
class_names = json.load(f) | |
def predict_image(image): | |
img = image.resize((224, 224)) | |
img_array = np.array(img) / 255.0 | |
img_array = np.expand_dims(img_array, axis=0) | |
preds = model.predict(img_array) | |
confidence = np.max(preds) | |
predicted_index = np.argmax(preds) | |
threshold = 0.5 # minimum confidence to accept prediction | |
if confidence < threshold: | |
return "Image not recognized as any animal in the dataset" | |
else: | |
return class_names[predicted_index] | |
demo = gr.Interface(fn=predict_image, inputs=gr.Image(type="pil"), outputs="text", | |
title="MobileNetV2 Animal Classifier") | |
demo.launch() | |