isana25 commited on
Commit
5b5f629
·
verified ·
1 Parent(s): 91a7238

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +102 -0
app.py ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import requests
3
+ import joblib
4
+ import torch
5
+ from transformers import AutoTokenizer, AutoModelForQuestionAnswering, AutoModelForSequenceClassification
6
+ from fastapi import FastAPI, HTTPException
7
+ from pydantic import BaseModel
8
+
9
+ app = FastAPI()
10
+
11
+ # Utility to download files if not present locally
12
+ def download_file(url, dest):
13
+ if not os.path.exists(dest):
14
+ print(f"Downloading {url} to {dest}")
15
+ r = requests.get(url)
16
+ r.raise_for_status()
17
+ with open(dest, 'wb') as f:
18
+ f.write(r.content)
19
+ else:
20
+ print(f"File {dest} already exists.")
21
+
22
+ # ----------- Setup for BERT QA model (Virtual Consultation) ------------
23
+
24
+ qa_model_dir = "./bert_mini_squadv2_finetuned"
25
+ os.makedirs(qa_model_dir, exist_ok=True)
26
+
27
+ qa_files = {
28
+ "pytorch_model.bin": "https://huggingface.co/your-username/your-files-path/resolve/main/bert_mini_squadv2_finetuned/pytorch_model.bin",
29
+ "config.json": "https://huggingface.co/your-username/your-files-path/resolve/main/bert_mini_squadv2_finetuned/config.json",
30
+ "tokenizer_config.json": "https://huggingface.co/your-username/your-files-path/resolve/main/bert_mini_squadv2_finetuned/tokenizer_config.json",
31
+ "vocab.txt": "https://huggingface.co/your-username/your-files-path/resolve/main/bert_mini_squadv2_finetuned/vocab.txt",
32
+ }
33
+
34
+ for fname, furl in qa_files.items():
35
+ download_file(furl, os.path.join(qa_model_dir, fname))
36
+
37
+ tokenizer_qa = AutoTokenizer.from_pretrained(qa_model_dir)
38
+ model_qa = AutoModelForQuestionAnswering.from_pretrained(qa_model_dir)
39
+
40
+ # ----------- Setup for Diabetes XGBoost Model (Risk Prediction) ------------
41
+
42
+ diabetes_pkl_url = "https://huggingface.co/your-username/your-files-path/resolve/main/diabetes_xgboost_model.pkl"
43
+ diabetes_pkl_path = "./diabetes_xgboost_model.pkl"
44
+ download_file(diabetes_pkl_url, diabetes_pkl_path)
45
+ diabetes_model = joblib.load(diabetes_pkl_path)
46
+
47
+ # ----------- Setup for other features: load pretrained models directly ------------
48
+
49
+ from transformers import pipeline
50
+
51
+ # Monitoring & Alerts - Summarization using bert-mini finetuned on squad_v2
52
+ monitoring_model_id = "prajjwal1/bert-mini"
53
+ summarizer = pipeline("summarization", model=monitoring_model_id)
54
+
55
+ # Personalized Simulation - Bio_ClinicalBERT sequence classifier
56
+ personalized_model_id = "emilyalsentzer/Bio_ClinicalBERT"
57
+ personalized_tokenizer = AutoTokenizer.from_pretrained(personalized_model_id)
58
+ personalized_model = AutoModelForSequenceClassification.from_pretrained(personalized_model_id)
59
+
60
+ # --- Pydantic models for request validation ---
61
+
62
+ class QARequest(BaseModel):
63
+ question: str
64
+ context: str
65
+
66
+ class RiskPredictionRequest(BaseModel):
67
+ features: list # example: [age, bmi, blood_pressure, ...]
68
+
69
+ # --- API endpoints ---
70
+
71
+ @app.post("/virtual_consultation")
72
+ def virtual_consultation(data: QARequest):
73
+ inputs = tokenizer_qa(data.question, data.context, return_tensors="pt")
74
+ with torch.no_grad():
75
+ outputs = model_qa(**inputs)
76
+ answer_start = torch.argmax(outputs.start_logits)
77
+ answer_end = torch.argmax(outputs.end_logits) + 1
78
+ answer = tokenizer_qa.convert_tokens_to_string(
79
+ tokenizer_qa.convert_ids_to_tokens(inputs.input_ids[0][answer_start:answer_end])
80
+ )
81
+ return {"answer": answer}
82
+
83
+ @app.post("/risk_prediction")
84
+ def risk_prediction(data: RiskPredictionRequest):
85
+ import numpy as np
86
+ features = np.array(data.features).reshape(1, -1)
87
+ pred = diabetes_model.predict(features)
88
+ return {"risk_prediction": int(pred[0])}
89
+
90
+ @app.post("/monitoring_alerts")
91
+ def monitoring_alerts(text: str):
92
+ summary = summarizer(text, max_length=50, min_length=20, do_sample=False)
93
+ return {"summary": summary[0]['summary_text']}
94
+
95
+ @app.post("/personalized_simulation")
96
+ def personalized_simulation(text: str):
97
+ inputs = personalized_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
98
+ outputs = personalized_model(**inputs)
99
+ logits = outputs.logits.detach().numpy()
100
+ pred_label = logits.argmax()
101
+ return {"predicted_label": int(pred_label)}
102
+