isana25's picture
Update app.py
97b8e7d verified
import os
import requests
from groq import Groq
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from PyPDF2 import PdfReader
from tempfile import NamedTemporaryFile
# Initialize Groq client
client = Groq(api_key=os.environ['GROQ_API_KEY'])
# Function to extract text from a PDF
def extract_text_from_pdf(pdf_file_path):
pdf_reader = PdfReader(pdf_file_path)
text = ""
for page in pdf_reader.pages:
page_text = page.extract_text()
if page_text:
text += page_text
return text
# Function to split text into chunks
def chunk_text(text, chunk_size=500, chunk_overlap=50):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size, chunk_overlap=chunk_overlap
)
return text_splitter.split_text(text)
# Function to create embeddings and store them in FAISS
def create_embeddings_and_store(chunks, vector_db=None):
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
if vector_db is None:
vector_db = FAISS.from_texts(chunks, embedding=embeddings)
else:
vector_db.add_texts(chunks)
return vector_db
# Function to query the vector database and interact with Groq
def query_vector_db(query, vector_db):
docs = vector_db.similarity_search(query, k=3)
context = "\n".join([doc.page_content for doc in docs])
chat_completion = client.chat.completions.create(
messages=[
{"role": "system", "content": f"Use the following context:\n{context}"},
{"role": "user", "content": query},
],
model="llama3-8b-8192",
)
return chat_completion.choices[0].message.content
# Function to convert Google Drive view link to downloadable link
def get_direct_download_link(view_url):
if "drive.google.com/file/d/" in view_url:
file_id = view_url.split("/file/d/")[1].split("/")[0]
return f"https://drive.google.com/uc?export=download&id={file_id}"
return None
# Function to download and save a PDF from a URL
def download_pdf_from_url(url):
direct_url = get_direct_download_link(url)
if not direct_url:
return None
response = requests.get(direct_url)
if response.status_code == 200:
temp_file = NamedTemporaryFile(delete=False, suffix=".pdf")
temp_file.write(response.content)
temp_file.close()
return temp_file.name
else:
return None
# Function to process all documents and build vector DB
def process_documents(doc_links):
vector_db = None
for idx, link in enumerate(doc_links):
print(f"πŸ“„ Processing document {idx + 1}...")
pdf_path = download_pdf_from_url(link)
if pdf_path:
text = extract_text_from_pdf(pdf_path)
chunks = chunk_text(text)
vector_db = create_embeddings_and_store(chunks, vector_db=vector_db)
print(f"βœ… Document {idx + 1} processed.")
else:
print(f"❌ Failed to process document {idx + 1}")
return vector_db
# Main callable function for Graido
def run_query_pipeline(doc_links, user_query):
"""
Process documents and run a query. Returns LLM response.
Args:
doc_links (List[str]): List of Google Drive view links
user_query (str): User's natural language query
Returns:
str: LLM-generated response based on document context
"""
vector_db = process_documents(doc_links)
if not vector_db:
return "⚠️ No documents could be processed."
if not user_query:
return "⚠️ No user query provided."
response = query_vector_db(user_query, vector_db)
return response