Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from tensorflow.keras.preprocessing import image
|
4 |
+
from tensorflow.keras.models import load_model
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
# Load model
|
8 |
+
model = load_model("plant_disease_model.h5") # You must include this file in your repo
|
9 |
+
IMG_SIZE = (224, 224)
|
10 |
+
class_names = ['Apple___Black_rot', 'Tomato___Early_blight', 'Potato___Late_blight'] # Update this to match your model
|
11 |
+
|
12 |
+
# Prediction function
|
13 |
+
def predict_plant_disease(img):
|
14 |
+
img = img.resize(IMG_SIZE)
|
15 |
+
img_array = image.img_to_array(img) / 255.0
|
16 |
+
img_array = np.expand_dims(img_array, axis=0)
|
17 |
+
|
18 |
+
predictions = model.predict(img_array)
|
19 |
+
index = np.argmax(predictions)
|
20 |
+
confidence = float(predictions[0][index])
|
21 |
+
|
22 |
+
disease_name = class_names[index]
|
23 |
+
confidence_text = f"{confidence:.2%}"
|
24 |
+
confidence_value = round(confidence, 2)
|
25 |
+
|
26 |
+
return disease_name, confidence_value, confidence_text
|
27 |
+
|
28 |
+
# Gradio UI
|
29 |
+
with gr.Blocks(css=".green-btn button {background-color: #2e7d32 !important; color: white;}") as demo:
|
30 |
+
gr.Markdown("<h1 style='text-align:center;'>πΏ Smart Plant Disease Detector</h1>")
|
31 |
+
|
32 |
+
with gr.Row():
|
33 |
+
with gr.Column(scale=1):
|
34 |
+
image_input = gr.Image(type="pil", label="π· Upload Leaf Image")
|
35 |
+
predict_btn = gr.Button("π Detect Disease", elem_classes="green-btn")
|
36 |
+
|
37 |
+
with gr.Column(scale=1):
|
38 |
+
disease_output = gr.Textbox(label="πͺ΄ Detected Disease")
|
39 |
+
confidence_bar = gr.Slider(label="π Confidence Level", minimum=0, maximum=1, step=0.01, interactive=False)
|
40 |
+
confidence_text = gr.Textbox(label="π’ Confidence (Text)")
|
41 |
+
|
42 |
+
predict_btn.click(fn=predict_plant_disease,
|
43 |
+
inputs=image_input,
|
44 |
+
outputs=[disease_output, confidence_bar, confidence_text])
|
45 |
+
|
46 |
+
demo.launch()
|