Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import tensorflow as tf
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
# 1. Load your trained model
|
9 |
+
model = tf.keras.models.load_model("best_model.h5")
|
10 |
+
|
11 |
+
# 2. Denoising pipeline function
|
12 |
+
def process_and_denoise(image):
|
13 |
+
"""
|
14 |
+
Input: HxW grayscale or color image (numpy array).
|
15 |
+
Outputs: (orig, noisy, denoised) all as 64×64 uint8 arrays.
|
16 |
+
"""
|
17 |
+
# --- Preprocess Original ---
|
18 |
+
# If color, convert to gray:
|
19 |
+
if image.ndim == 3 and image.shape[2] == 3:
|
20 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
21 |
+
else:
|
22 |
+
# could be (H,W,1) or (H,W)
|
23 |
+
gray = image[...,0] if image.ndim == 3 else image
|
24 |
+
|
25 |
+
# Resize to 64×64
|
26 |
+
orig = cv2.resize(gray, (64,64))
|
27 |
+
orig_norm = orig.astype(np.float32) / 255.0
|
28 |
+
|
29 |
+
# --- Add Gaussian Noise ---
|
30 |
+
sigma = 0.1 # same noise level you trained with
|
31 |
+
noisy = orig_norm + sigma * np.random.randn(*orig_norm.shape)
|
32 |
+
noisy = np.clip(noisy, 0.0, 1.0)
|
33 |
+
|
34 |
+
# --- Denoise with the autoencoder ---
|
35 |
+
inp = noisy[np.newaxis, ..., np.newaxis] # shape (1,64,64,1)
|
36 |
+
pred = model.predict(inp)[0, ..., 0] # shape (64,64)
|
37 |
+
|
38 |
+
# --- Convert all to uint8 for display ---
|
39 |
+
orig_disp = (orig_norm * 255).astype(np.uint8)
|
40 |
+
noisy_disp = (noisy * 255).astype(np.uint8)
|
41 |
+
recon_disp = (pred * 255).astype(np.uint8)
|
42 |
+
|
43 |
+
return orig_disp, noisy_disp, recon_disp
|
44 |
+
|
45 |
+
# 3. Build Gradio interface with 3 outputs
|
46 |
+
demo = gr.Interface(
|
47 |
+
fn=process_and_denoise,
|
48 |
+
inputs=gr.Image(type="numpy", label="Input Image"),
|
49 |
+
outputs=[
|
50 |
+
gr.Image(type="numpy", label="Original (64×64)"),
|
51 |
+
gr.Image(type="numpy", label="Noisy (σ=0.1)"),
|
52 |
+
gr.Image(type="numpy", label="Reconstructed")
|
53 |
+
],
|
54 |
+
title="Denoising Autoencoder Demo",
|
55 |
+
description=(
|
56 |
+
"Upload any image (grayscale or color). "
|
57 |
+
"This app converts it to 64×64 grayscale, adds Gaussian noise, "
|
58 |
+
"then denoises it with the trained autoencoder. "
|
59 |
+
"See all three side by side!"
|
60 |
+
)
|
61 |
+
)
|
62 |
+
|
63 |
+
if __name__ == "__main__":
|
64 |
+
demo.launch(server_name="0.0.0.0", share=True)
|