Update app.py
Browse files
app.py
CHANGED
@@ -5,59 +5,63 @@ import numpy as np
|
|
5 |
import tensorflow as tf
|
6 |
import gradio as gr
|
7 |
|
8 |
-
# Load
|
9 |
-
# then re-compile it so we can call predict()
|
10 |
model = tf.keras.models.load_model("best_model.h5", compile=False)
|
11 |
model.compile(optimizer="adam", loss="mse")
|
12 |
|
13 |
def process_and_denoise(image):
|
14 |
"""
|
15 |
Takes any input image (color or grayscale), converts it to 64×64 grayscale,
|
16 |
-
adds Gaussian noise, and returns
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
20 |
"""
|
21 |
-
#
|
22 |
if image.ndim == 3 and image.shape[2] == 3:
|
23 |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
24 |
else:
|
25 |
-
# Could be (H,W,1) or (H,W)
|
26 |
gray = image[..., 0] if image.ndim == 3 else image
|
27 |
|
28 |
-
# Resize
|
29 |
-
|
30 |
-
|
31 |
|
32 |
# Add Gaussian noise
|
33 |
sigma = 0.1
|
34 |
-
noisy =
|
35 |
noisy = np.clip(noisy, 0.0, 1.0)
|
36 |
|
37 |
-
# Denoise
|
38 |
-
inp
|
39 |
-
pred = model.predict(inp)[0, ..., 0]
|
40 |
|
41 |
-
# Convert back to uint8
|
42 |
-
orig_disp = (
|
43 |
-
noisy_disp = (noisy
|
44 |
-
recon_disp = (pred
|
45 |
|
46 |
-
|
|
|
|
|
|
|
|
|
47 |
|
48 |
demo = gr.Interface(
|
49 |
fn=process_and_denoise,
|
50 |
inputs=gr.Image(type="numpy", label="Input Image"),
|
51 |
outputs=[
|
52 |
-
gr.Image(type="numpy", label="Original
|
53 |
-
gr.Image(type="numpy", label="Noisy (σ=0.1)"),
|
54 |
-
gr.Image(type="numpy", label="Denoised
|
55 |
],
|
56 |
title="Denoising Autoencoder Demo",
|
57 |
description=(
|
58 |
-
"Upload any image (grayscale or color)
|
59 |
-
"
|
60 |
-
"
|
|
|
61 |
)
|
62 |
)
|
63 |
|
|
|
5 |
import tensorflow as tf
|
6 |
import gradio as gr
|
7 |
|
8 |
+
# Load the trained model without restoring old optimizer/loss, then re-compile
|
|
|
9 |
model = tf.keras.models.load_model("best_model.h5", compile=False)
|
10 |
model.compile(optimizer="adam", loss="mse")
|
11 |
|
12 |
def process_and_denoise(image):
|
13 |
"""
|
14 |
Takes any input image (color or grayscale), converts it to 64×64 grayscale,
|
15 |
+
adds Gaussian noise, runs the autoencoder, and returns all three stages
|
16 |
+
upsampled to 128×128 for clearer display:
|
17 |
+
1) Original resized
|
18 |
+
2) Noisy version
|
19 |
+
3) Denoised reconstruction
|
20 |
"""
|
21 |
+
# Convert to single-channel grayscale
|
22 |
if image.ndim == 3 and image.shape[2] == 3:
|
23 |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
24 |
else:
|
|
|
25 |
gray = image[..., 0] if image.ndim == 3 else image
|
26 |
|
27 |
+
# Resize down to 64×64 for the model
|
28 |
+
small = cv2.resize(gray, (64, 64))
|
29 |
+
norm = small.astype(np.float32) / 255.0
|
30 |
|
31 |
# Add Gaussian noise
|
32 |
sigma = 0.1
|
33 |
+
noisy = norm + sigma * np.random.randn(*norm.shape)
|
34 |
noisy = np.clip(noisy, 0.0, 1.0)
|
35 |
|
36 |
+
# Denoise with the autoencoder
|
37 |
+
inp = noisy[np.newaxis, ..., np.newaxis] # (1,64,64,1)
|
38 |
+
pred = model.predict(inp)[0, ..., 0] # (64,64)
|
39 |
|
40 |
+
# Convert back to uint8
|
41 |
+
orig_disp = (norm * 255).astype(np.uint8)
|
42 |
+
noisy_disp = (noisy * 255).astype(np.uint8)
|
43 |
+
recon_disp = (pred * 255).astype(np.uint8)
|
44 |
|
45 |
+
# Upsample each to 128×128 for display
|
46 |
+
def upsample(img):
|
47 |
+
return cv2.resize(img, (128, 128), interpolation=cv2.INTER_LINEAR)
|
48 |
+
|
49 |
+
return upsample(orig_disp), upsample(noisy_disp), upsample(recon_disp)
|
50 |
|
51 |
demo = gr.Interface(
|
52 |
fn=process_and_denoise,
|
53 |
inputs=gr.Image(type="numpy", label="Input Image"),
|
54 |
outputs=[
|
55 |
+
gr.Image(type="numpy", label="Original ▶ 128×128"),
|
56 |
+
gr.Image(type="numpy", label="Noisy (σ=0.1) ▶ 128×128"),
|
57 |
+
gr.Image(type="numpy", label="Denoised ▶ 128×128")
|
58 |
],
|
59 |
title="Denoising Autoencoder Demo",
|
60 |
description=(
|
61 |
+
"Upload any image (grayscale or color).\n"
|
62 |
+
"- Internally resized to 64×64 for denoising.\n"
|
63 |
+
"- Adds Gaussian noise (σ=0.1).\n"
|
64 |
+
"- Displays all stages upsampled to 128×128 for clearer viewing."
|
65 |
)
|
66 |
)
|
67 |
|