isana25's picture
Create app.py
6c6a63c verified
import gradio as gr
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
from PIL import Image
import torch
# Load the pre-trained model, processor, and tokenizer
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
# Set the device to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Define generation parameters
max_length = 16
num_beams = 4
# Function to generate caption from image
def generate_caption(image):
if image is None:
return "Please upload an image."
# Convert image to RGB if it's not
if image.mode != "RGB":
image = image.convert(mode="RGB")
# Preprocess the image
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
pixel_values = pixel_values.to(device)
# Generate caption
output_ids = model.generate(pixel_values, max_length=max_length, num_beams=num_beams)
caption = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return caption.strip()
# Create Gradio interface
iface = gr.Interface(
fn=generate_caption,
inputs=gr.Image(type="pil", label="Upload an Image"),
outputs=gr.Textbox(label="Generated Caption"),
title="🖼️ AI Image Caption Generator",
description="Upload an image, and the AI will generate a descriptive caption for it.",
allow_flagging="never"
)
# Launch the app
if __name__ == "__main__":
iface.launch()