Spaces:
Running
Running
import gradio as gr | |
import json | |
import os | |
import io | |
import pdfplumber | |
import requests | |
import together | |
from sentence_transformers import SentenceTransformer | |
import faiss | |
import numpy as np | |
import re | |
import unicodedata | |
from dotenv import load_dotenv | |
from flask import jsonify | |
load_dotenv() | |
API_URL = "ttps://1611-223-233-35-112.ngrok-free.app " | |
API_URL_FILES = f"{API_URL}/file" | |
API_URL_EMBEDDINGS = f"{API_URL}/embeddings" | |
API_URL_METADATA = f"{API_URL}/metadata" | |
# FAISS index setup | |
DIM = 768 # Adjust based on the embedding model | |
# Set up Together.AI API Key (Replace with your actual key) | |
assert os.getenv("TOGETHER_API_KEY"), "api key missing" | |
# Use a sentence transformer for embeddings | |
#'BAAI/bge-base-en-v1.5' | |
# embedding_model = SentenceTransformer("BAAI/bge-base-en-v1.5") | |
# 'togethercomputer/m2-bert-80M-8k-retrieval' | |
embedding_model = SentenceTransformer( | |
"togethercomputer/m2-bert-80M-8k-retrieval", | |
trust_remote_code=True # Allow remote code execution | |
) | |
embedding_dim = 768 # Adjust according to model | |
def store_document_data(PDF_FILE): | |
print(" Storing document...") | |
if PDF_FILE: | |
# Extract text from the PDF | |
text = extract_text_from_pdf(PDF_FILE) | |
if not text: | |
return "Could not extract any text from the PDF." | |
# Generate and return embedding | |
embedding = embedding_model.encode([text]).astype(np.float32) | |
print("Embeddings generated") | |
print("Embedding shape:", embedding.shape) | |
print(f"sending to {API_URL_EMBEDDINGS}") | |
try: | |
index = faiss.IndexFlatL2(embedding.shape[1]) | |
index.add(embedding) # Add embedding | |
print(index, index.ntotal) | |
if index.ntotal == 0: | |
raise ValueError("FAISS index is empty. No embeddings added.") | |
index_file = "index.bin" | |
faiss.write_index(index, index_file) | |
faiss_index = faiss.read_index(index_file) | |
print("FAISS index loaded successfully. Number of vectors:", faiss_index.ntotal) | |
doc_index = index.ntotal - 1 | |
with open(index_file, "rb") as f: | |
response = requests.post(API_URL_EMBEDDINGS, | |
files={"file": ("index.bin", f, "application/octet-stream")}) | |
print("sent", response.json()) | |
except requests.exceptions.RequestException as e: | |
return {"error": str(e)} | |
return doc_index | |
else: | |
return "No PDF file provided." | |
def retrieve_document(query): | |
print(f"Retrieving document based on:\n{query}") | |
embeddings_ = requests.get(API_URL_EMBEDDINGS) | |
metadata_ = requests.get(API_URL_METADATA) | |
# Check for errors before parsing JSON | |
if embeddings_.status_code != 200: | |
print(f"Error fetching embeddings: {embeddings_.status_code} - {embeddings_.text}") | |
return None | |
if metadata_.status_code != 200: | |
print(f"Error fetching metadata: {metadata_.status_code} - {metadata_.text}") | |
return None | |
try: | |
metadata_file = metadata_.json()['metadata_file'] | |
print(metadata_file) | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding metadata JSON: {e}") | |
return None | |
try: | |
print("Response content length:", len(embeddings_.content)) # Debugging | |
if len(embeddings_.content) == 0: | |
raise ValueError("Received empty FAISS index file") | |
# Convert response content to a byte stream | |
byte_stream = io.BytesIO(embeddings_.content) | |
# Write the received binary content to a temporary file | |
with open("downloaded_index.bin", "wb") as f: | |
f.write(byte_stream.read()) | |
# Load FAISS index from file | |
index = faiss.read_index("downloaded_index.bin") | |
print(f"β Successfully loaded FAISS index with {index.ntotal} vectors.") | |
except Exception as e: | |
print(f"Error loading FAISS index: {e}") | |
return None | |
print(index, metadata_file) | |
# Generate query embedding | |
query_embedding = embedding_model.encode([query]).astype(np.float32) | |
# Search for the closest document in FAISS index | |
_, closest_idx = index.search(query_embedding, 1) | |
metadata = metadata_file | |
# Check if a relevant document was found | |
if closest_idx[0][0] == -1 or str(closest_idx[0][0]) not in metadata: | |
print("No relevant document found") | |
return None | |
# Retrieve the document file path | |
filename = metadata[str(closest_idx[0][0])] | |
print(filename) | |
response = requests.get(API_URL_FILES, params={"file":filename}) | |
print(response.content) | |
recieved_file = "document.pdf" | |
if response.status_code == 200: | |
with open(recieved_file, "wb") as f: | |
f.write(response.content) | |
prompt_doc = extract_text_from_pdf(recieved_file) | |
print(f"PDF received successfully: received_{filename}") | |
else: | |
print(f"Error: {response.status_code}, {response.json()}") | |
return prompt_doc | |
def clean_text(text): | |
"""Cleans extracted text for better processing by the model.""" | |
print("cleaning") | |
text = unicodedata.normalize("NFKC", text) # Normalize Unicode characters | |
text = re.sub(r'\s+', ' ', text).strip() # Remove extra spaces and newlines | |
text = re.sub(r'[^a-zA-Z0-9.,!?;:\\"()\-]', ' ', text) # Keep basic punctuation | |
text = re.sub(r'(?i)(page\s*\d+)', '', text) # Remove page numbers | |
return text | |
def extract_text_from_pdf(pdf_file): | |
"""Extract and clean text from the uploaded PDF.""" | |
print("extracting") | |
try: | |
with pdfplumber.open(pdf_file) as pdf: | |
text = " ".join(clean_text(text) for page in pdf.pages if (text := page.extract_text())) | |
return text | |
except Exception as e: | |
print(f"Error extracting text: {e}{pdf_file}") | |
return None | |
def split_text(text, chunk_size=500): | |
"""Splits text into smaller chunks for better processing.""" | |
print("splitting") | |
return [text[i:i+chunk_size] for i in range(0, len(text), chunk_size)] | |
def chatbot(user_question): | |
"""Processes the PDF and answers the user's question.""" | |
print("chatbot start") | |
# retrieve the document relevant to the query | |
doc = retrieve_document(user_question) | |
if doc: | |
print(f"found doc:\n{doc}\n") | |
# Split into smaller chunks | |
chunks = split_text(doc) | |
# Use only the first chunk (to optimize token usage) | |
prompt = f"Based on this document, answer the question:\n\nDocument:\n{chunks[0]}\n\nQuestion: {user_question}" | |
print(f"prompt:\n{prompt}") | |
else: | |
prompt=user_question | |
try: | |
print("asking") | |
response = together.Completion.create( | |
model="mistralai/Mistral-7B-Instruct-v0.1", | |
prompt=prompt, | |
max_tokens=200, | |
temperature=0.7, | |
) | |
# Return chatbot's response | |
return response.choices[0].text | |
except Exception as e: | |
return f"Error generating response: {e}" | |
# Send to Together.AI (Mistral-7B) | |
def helloWorld(text): | |
return f"{text} : hello world" | |
# Gradio Interface | |
iface = gr.TabbedInterface( | |
[ | |
gr.Interface( | |
fn=chatbot, | |
inputs=gr.Textbox(label="Ask a Question"), | |
outputs=gr.Textbox(label="Answer"), | |
title="PDF Q&A Chatbot (Powered by Together.AI)", | |
), | |
gr.Interface( | |
fn=helloWorld, | |
inputs="text", | |
outputs="text", | |
), | |
gr.Interface( | |
fn=store_document_data, | |
inputs=[gr.File(label="PDF_FILE")], | |
outputs=gr.Textbox(label="Answer"), | |
title="pdf file, metadata, index parsing and storing", | |
), | |
] | |
) | |
# Launch Gradio app | |
iface.launch(show_error=True) |