Spaces:
Sleeping
Sleeping
Yoad
commited on
Commit
·
f59869c
1
Parent(s):
e641911
Dataset Preview - Initial commit
Browse files- .gitignore +13 -0
- .python-version +1 -0
- app.py +218 -0
- pyproject.toml +13 -0
- requirements.txt +4 -0
- uv.lock +0 -0
.gitignore
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# python venvs
|
2 |
+
.venv
|
3 |
+
|
4 |
+
# env files
|
5 |
+
.env
|
6 |
+
|
7 |
+
# local streamlit state
|
8 |
+
.streamlit/
|
9 |
+
|
10 |
+
# pycache
|
11 |
+
__pycache__/
|
12 |
+
*.py[cod]
|
13 |
+
|
.python-version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
3.11.9
|
app.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import math
|
3 |
+
import os
|
4 |
+
import random
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
+
import streamlit as st
|
8 |
+
from huggingface_hub import HfApi
|
9 |
+
|
10 |
+
st.set_page_config(page_title="Knesset Plenums Dataset Preview", layout="wide")
|
11 |
+
|
12 |
+
fallback_dataset_repo_owner = os.environ.get("REPO_OWNER", "ivrit.ai")
|
13 |
+
dataset_repo_owner = os.environ.get("SPACE_AUTHOR_NAME", fallback_dataset_repo_owner)
|
14 |
+
dataset_repo_name = os.environ.get("DATASET_REPO_NAME", "knesset-plenums")
|
15 |
+
repo_id = f"{dataset_repo_owner}/{dataset_repo_name}"
|
16 |
+
|
17 |
+
hf_api = HfApi(token=st.secrets["HF_TOKEN"])
|
18 |
+
|
19 |
+
manifest_file = hf_api.hf_hub_download(repo_id, "manifest.csv", repo_type="dataset")
|
20 |
+
|
21 |
+
manifest_df = pd.read_csv(manifest_file)
|
22 |
+
|
23 |
+
# Filter samples with duration less than 7200 seconds (2 hours)
|
24 |
+
filtered_samples = manifest_df[manifest_df["duration"] < 7200].copy()
|
25 |
+
|
26 |
+
# Convert duration from seconds to hours for display
|
27 |
+
filtered_samples["duration_hours"] = filtered_samples["duration"] / 3600
|
28 |
+
|
29 |
+
# Create display options for the dropdown
|
30 |
+
sample_options = {}
|
31 |
+
for _, row in filtered_samples.iterrows():
|
32 |
+
plenum_id = str(row["plenum_id"])
|
33 |
+
plenum_date = row["plenum_date"]
|
34 |
+
hours = round(row["duration_hours"], 1)
|
35 |
+
display_text = f"{plenum_date} - ({hours} hours)"
|
36 |
+
sample_options[display_text] = plenum_id
|
37 |
+
|
38 |
+
# Default to sample_id 81733 if available, otherwise use the first sample
|
39 |
+
default_sample_id = "81733"
|
40 |
+
default_option = next(
|
41 |
+
(k for k, v in sample_options.items() if v == default_sample_id),
|
42 |
+
next(iter(sample_options.keys())) if sample_options else None,
|
43 |
+
)
|
44 |
+
|
45 |
+
# Create the dropdown for sample selection
|
46 |
+
selected_option = st.sidebar.selectbox(
|
47 |
+
"Select a plenum sample:",
|
48 |
+
options=list(sample_options.keys()),
|
49 |
+
index=list(sample_options.keys()).index(default_option) if default_option else 0,
|
50 |
+
)
|
51 |
+
|
52 |
+
# Get the selected plenum ID
|
53 |
+
sample_plenum_id = sample_options[selected_option]
|
54 |
+
sample_audio_file_repo_path = f"{sample_plenum_id}/audio.m4a"
|
55 |
+
sample_metadata_file_repo_path = f"{sample_plenum_id}/metadata.json"
|
56 |
+
sample_aligned_file_repo_path = f"{sample_plenum_id}/transcript.aligned.json"
|
57 |
+
sample_raw_text_repo_path = f"{sample_plenum_id}/raw.transcript.txt"
|
58 |
+
|
59 |
+
|
60 |
+
# Display the title with the selected Plenum ID
|
61 |
+
st.title(f"Knesset Plenum ID: {sample_plenum_id}")
|
62 |
+
|
63 |
+
|
64 |
+
# Cache the sample data loading to only reload when the sample changes
|
65 |
+
@st.cache_data
|
66 |
+
def load_sample_data(repo_id, plenum_id):
|
67 |
+
"""Load sample data files for a given plenum ID"""
|
68 |
+
audio_path = f"{plenum_id}/audio.m4a"
|
69 |
+
metadata_path = f"{plenum_id}/metadata.json"
|
70 |
+
transcript_path = f"{plenum_id}/transcript.aligned.json"
|
71 |
+
|
72 |
+
audio_file = hf_api.hf_hub_download(repo_id, audio_path, repo_type="dataset")
|
73 |
+
metadata_file = hf_api.hf_hub_download(repo_id, metadata_path, repo_type="dataset")
|
74 |
+
transcript_file = hf_api.hf_hub_download(
|
75 |
+
repo_id, transcript_path, repo_type="dataset"
|
76 |
+
)
|
77 |
+
raw_transcript_text_file = hf_api.hf_hub_download(
|
78 |
+
repo_id, sample_raw_text_repo_path, repo_type="dataset"
|
79 |
+
)
|
80 |
+
|
81 |
+
return audio_file, metadata_file, transcript_file, raw_transcript_text_file
|
82 |
+
|
83 |
+
|
84 |
+
# Load the sample data for the selected plenum
|
85 |
+
(
|
86 |
+
sample_audio_file,
|
87 |
+
sample_metadata_file,
|
88 |
+
sample_transcript_aligned_file,
|
89 |
+
sample_raw_transcript_text_file,
|
90 |
+
) = load_sample_data(repo_id, sample_plenum_id)
|
91 |
+
|
92 |
+
# Parses the metadata file of this sample - to get the list of all segments.
|
93 |
+
with open(sample_metadata_file, "r") as f:
|
94 |
+
sample_metadata = json.load(f)
|
95 |
+
|
96 |
+
# each segment is a dict with the structure:
|
97 |
+
# {
|
98 |
+
# "start": 3527.26,
|
99 |
+
# "end": 3531.53,
|
100 |
+
# "probability": 0.9309
|
101 |
+
# },
|
102 |
+
segments_quality_scores = sample_metadata["per_segment_quality_scores"]
|
103 |
+
segments_quality_scores_df = pd.DataFrame(segments_quality_scores)
|
104 |
+
segments_quality_scores_df["segment_id"] = segments_quality_scores_df.index
|
105 |
+
|
106 |
+
with open(sample_transcript_aligned_file, "r") as f:
|
107 |
+
sample_transcript_aligned = json.load(f)
|
108 |
+
transcript_segments = sample_transcript_aligned["segments"]
|
109 |
+
|
110 |
+
with open(sample_raw_transcript_text_file, "r") as f:
|
111 |
+
sample_raw_text = f.read()
|
112 |
+
|
113 |
+
col_main, col_aux = st.columns([2, 3])
|
114 |
+
|
115 |
+
event = col_main.dataframe(
|
116 |
+
segments_quality_scores_df,
|
117 |
+
on_select="rerun",
|
118 |
+
hide_index=True,
|
119 |
+
selection_mode=["single-row"],
|
120 |
+
column_config={
|
121 |
+
"probability": st.column_config.ProgressColumn(
|
122 |
+
label="Quality Score",
|
123 |
+
width="medium",
|
124 |
+
format="percent",
|
125 |
+
min_value=0,
|
126 |
+
max_value=1,
|
127 |
+
)
|
128 |
+
},
|
129 |
+
)
|
130 |
+
|
131 |
+
|
132 |
+
# Initialize session state for selection if it doesn't exist
|
133 |
+
if "default_selection" not in st.session_state:
|
134 |
+
st.session_state.default_selection = random.randint(
|
135 |
+
0, min(49, len(segments_quality_scores_df) - 1)
|
136 |
+
)
|
137 |
+
|
138 |
+
# If a selection exists, get the start and end times of the selected segment
|
139 |
+
if event and event.selection and event.selection["rows"]:
|
140 |
+
row_idx = event.selection["rows"][0]
|
141 |
+
else:
|
142 |
+
# Use the default random selection if no row is selected
|
143 |
+
row_idx = st.session_state.default_selection
|
144 |
+
|
145 |
+
df_row = segments_quality_scores_df.iloc[row_idx]
|
146 |
+
segment_id = int(df_row["segment_id"])
|
147 |
+
selected_segment = segments_quality_scores[segment_id]
|
148 |
+
start_time = selected_segment["start"]
|
149 |
+
end_time = selected_segment["end"]
|
150 |
+
|
151 |
+
with col_main:
|
152 |
+
st.write(f"Selected segment: {selected_segment}")
|
153 |
+
start_at = selected_segment["start"]
|
154 |
+
end_at = selected_segment["end"]
|
155 |
+
|
156 |
+
st.audio(
|
157 |
+
sample_audio_file,
|
158 |
+
start_time=math.floor(start_at),
|
159 |
+
end_time=math.ceil(end_at),
|
160 |
+
autoplay=True,
|
161 |
+
)
|
162 |
+
transcript_segment = transcript_segments[segment_id]
|
163 |
+
st.caption(f'<div dir="rtl">{transcript_segment["text"]}</div>', unsafe_allow_html=True)
|
164 |
+
st.divider()
|
165 |
+
st.caption(
|
166 |
+
f"Note: The audio will start at {math.floor(start_at)} seconds and end at {math.ceil(end_at)} seconds (rounded up/down) since this is the resolution of the player, actual segments are more accurate."
|
167 |
+
)
|
168 |
+
|
169 |
+
|
170 |
+
with col_aux:
|
171 |
+
# Create a chart of Quality vs start_time
|
172 |
+
st.subheader("Segment Quality Over Time")
|
173 |
+
|
174 |
+
# Prepare data for the chart
|
175 |
+
chart_data = segments_quality_scores_df.copy()
|
176 |
+
chart_data = chart_data.sort_values(by="start")
|
177 |
+
|
178 |
+
# Add a scatter plot to highlight the selected segment
|
179 |
+
import altair as alt
|
180 |
+
import pandas as pd
|
181 |
+
|
182 |
+
# Create a base chart with all points
|
183 |
+
base_chart = alt.Chart(chart_data).mark_circle(size=20).encode(
|
184 |
+
x=alt.X('start:Q', title='Start Time (seconds)'),
|
185 |
+
y=alt.Y('probability:Q', title='Quality Score', scale=alt.Scale(domain=[0, 1])),
|
186 |
+
tooltip=['start', 'end', 'probability']
|
187 |
+
)
|
188 |
+
|
189 |
+
# Create a highlight for the selected segment
|
190 |
+
selected_point = pd.DataFrame([{
|
191 |
+
'start': selected_segment['start'],
|
192 |
+
'probability': selected_segment['probability']
|
193 |
+
}])
|
194 |
+
|
195 |
+
highlight = alt.Chart(selected_point).mark_circle(size=120, color='red').encode(
|
196 |
+
x='start:Q',
|
197 |
+
y='probability:Q'
|
198 |
+
)
|
199 |
+
|
200 |
+
# Combine the charts
|
201 |
+
combined_chart = base_chart + highlight
|
202 |
+
|
203 |
+
# Display the chart
|
204 |
+
st.altair_chart(combined_chart, use_container_width=True)
|
205 |
+
|
206 |
+
with st.expander("Raw Transcript Text", expanded=False):
|
207 |
+
st.text_area(
|
208 |
+
"Raw Transcript Text",
|
209 |
+
value=sample_raw_text,
|
210 |
+
height=300,
|
211 |
+
label_visibility="collapsed",
|
212 |
+
disabled=True,
|
213 |
+
)
|
214 |
+
|
215 |
+
with st.expander("Sample Metadata", expanded=False):
|
216 |
+
st.json(
|
217 |
+
sample_metadata
|
218 |
+
)
|
pyproject.toml
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
name = "knesset-plenums-preview"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = "Add your description here"
|
5 |
+
readme = "README.md"
|
6 |
+
requires-python = ">=3.11.9"
|
7 |
+
dependencies = [
|
8 |
+
"datasets>=3.5.0",
|
9 |
+
"huggingface-hub>=0.30.2",
|
10 |
+
"pandas>=2.2.3",
|
11 |
+
"python-dotenv>=1.1.0",
|
12 |
+
"streamlit==1.44.1",
|
13 |
+
]
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.44.1
|
2 |
+
datasets
|
3 |
+
huggingface_hub
|
4 |
+
pandas
|
uv.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|