Spaces:
Sleeping
Sleeping
File size: 2,548 Bytes
384acb5 f240b4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import duckdb
import gradio as gr
from gradio_client import Client
from sentence_transformers import CrossEncoder
from sentence_transformers import SentenceTransformer
from sentence_transformers.models import StaticEmbedding
from huggingface_hub import get_token
import pandas as pd
static_embedding = StaticEmbedding.from_model2vec("minishlab/potion-base-8M")
model = SentenceTransformer(modules=[static_embedding])
reranker = CrossEncoder("sentence-transformers/all-MiniLM-L12-v2")
embedding_dimensions = model.get_sentence_embedding_dimension()
dataset_name = "cyrilzakka/clinical-trials-embeddings"
embedding_column = "embedding"
embedding_column_float = f"{embedding_column}_float"
table_name = "clinical_trials"
duckdb.sql(query=f"""
INSTALL vss;
LOAD vss;
CREATE TABLE {table_name} AS
SELECT *, {embedding_column}::float[{embedding_dimensions}] as {embedding_column_float}
FROM 'hf://datasets/{dataset_name}/**/*.parquet';
CREATE INDEX my_hnsw_index ON {table_name} USING HNSW ({embedding_column_float}) WITH (metric = 'cosine');
""")
def similarity_search(query: str, k: int = 5):
embedding = model.encode(query).tolist()
df = duckdb.sql(
query=f"""
SELECT *, array_cosine_distance({embedding_column_float}, {embedding}::FLOAT[{embedding_dimensions}]) as distance
FROM {table_name}
ORDER BY distance
LIMIT {k};
"""
).to_df()
df = df.drop(columns=[embedding_column, embedding_column_float])
return df
def rerank(query: str, documents: pd.DataFrame) -> pd.DataFrame:
documents = documents.copy()
documents = documents.drop_duplicates("briefSummary")
documents["rank"] = reranker.predict([[query, hit] for hit in documents["briefSummary"]])
documents = documents.sort_values(by="rank", ascending=False)
return documents
with gr.Blocks() as demo:
gr.Markdown("""# RAG - Clinical Trials (clinicaltrials.gov)
Executes vector search and re-ranking top of [clinical-trials-embeddings](https://huggingface.co/datasets/cyrilzakka/clinical-trials-embeddings).
Part of the [Therapeutics Actionability Challenge](https://sail.health/event/sail-2025/program/) Demo.""")
query = gr.Textbox(label="Query")
k = gr.Slider(1, 50, value=5, label="Number of results")
btn = gr.Button("Search")
results = gr.Dataframe(headers=["url", "chunk", "distance"], wrap=True)
btn.click(fn=similarity_search, inputs=[query, k], outputs=[results])
demo.launch(mcp_server=True) |