Upload folder using huggingface_hub
Browse files
app.py
CHANGED
@@ -86,18 +86,14 @@ def inference(content_image, style_name, style_strength, output_quality, progres
|
|
86 |
content_features = model(content_img)
|
87 |
style_features = cached_style_features[style_name][0 if img_size == 512 else 1]
|
88 |
|
89 |
-
scaler = torch.amp.GradScaler('cuda')
|
90 |
-
|
91 |
for _ in tqdm(range(iters), desc='The magic is happening ✨'):
|
92 |
optimizer.zero_grad()
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
total_loss = compute_loss(generated_features, content_features, style_features, alpha, beta)
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
scaler.update()
|
101 |
|
102 |
et = time.time()
|
103 |
print('TIME TAKEN:', et-st)
|
|
|
86 |
content_features = model(content_img)
|
87 |
style_features = cached_style_features[style_name][0 if img_size == 512 else 1]
|
88 |
|
|
|
|
|
89 |
for _ in tqdm(range(iters), desc='The magic is happening ✨'):
|
90 |
optimizer.zero_grad()
|
91 |
|
92 |
+
generated_features = model(generated_img)
|
93 |
+
total_loss = compute_loss(generated_features, content_features, style_features, alpha, beta)
|
|
|
94 |
|
95 |
+
total_loss.backward()
|
96 |
+
optimizer.step()
|
|
|
97 |
|
98 |
et = time.time()
|
99 |
print('TIME TAKEN:', et-st)
|