Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 1,589 Bytes
f4dea7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import { createLlamaPrompt } from "@/lib/createLlamaPrompt"
import { predict } from "./predict"
import { Preset } from "../engine/presets"
export const getStory = async ({
preset,
prompt = "",
}: {
preset: Preset;
prompt: string;
}) => {
const query = createLlamaPrompt([
{
role: "system",
content: [
`You are a comic book author specialized in ${preset.llmPrompt}`,
`You are going to be asked to write a comic book page, your mission is to answer a JSON array containing 4 items, to describe the page (one item per panel).`,
`Each array item should be a comic book panel caption the describe the environment, era, characters, objects, textures, lighting.`,
`Be brief in your caption don't add your own comments. Be straight to the point, and never reply things like "Sure, I can.." etc.`
].filter(item => item).join("\n")
},
{
role: "user",
content: `The story is: ${prompt}`,
}
])
let result = ""
try {
result = await predict(query)
if (!result.trim().length) {
throw new Error("empty result!")
}
} catch (err) {
console.log(`prediction of the story failed, trying again..`)
try {
result = await predict(query+".")
if (!result.trim().length) {
throw new Error("empty result!")
}
} catch (err) {
console.error(`prediction of the story failed again!`)
throw new Error(`failed to generate the story ${err}`)
}
}
const tmp = result // result.split("Caption:").pop() || result
return tmp.replaceAll("\n", ", ")
} |