tikslop / api_metrics.py
jbilcke-hf's picture
jbilcke-hf HF Staff
fixing small bugs here and there
2e813e6
raw
history blame
6.51 kB
import time
import logging
import asyncio
from collections import defaultdict
from typing import Dict, List, Set, Optional
import datetime
logger = logging.getLogger(__name__)
class MetricsTracker:
"""
Tracks usage metrics across the API server.
"""
def __init__(self):
# Total metrics since server start
self.total_requests = {
'chat': 0,
'video': 0,
'search': 0,
'other': 0,
}
# Per-user metrics
self.user_metrics = defaultdict(lambda: {
'requests': {
'chat': 0,
'video': 0,
'search': 0,
'other': 0,
},
'first_seen': time.time(),
'last_active': time.time(),
'role': 'anon'
})
# Rate limiting buckets (per minute)
self.rate_limits = {
'anon': {
'video': 30,
'search': 45,
'chat': 90,
'other': 45
},
'normal': {
'video': 60,
'search': 90,
'chat': 180,
'other': 90
},
'pro': {
'video': 120,
'search': 180,
'chat': 300,
'other': 180
},
'admin': {
'video': 240,
'search': 360,
'chat': 450,
'other': 360
}
}
# Minute-based rate limiting buckets
self.time_buckets = defaultdict(lambda: defaultdict(lambda: defaultdict(int)))
# Lock for thread safety
self.lock = asyncio.Lock()
# Track concurrent sessions by IP
self.ip_sessions = defaultdict(set)
# Server start time
self.start_time = time.time()
async def record_request(self, user_id: str, ip: str, request_type: str, role: str):
"""Record a request for metrics and rate limiting"""
async with self.lock:
# Update total metrics
if request_type in self.total_requests:
self.total_requests[request_type] += 1
else:
self.total_requests['other'] += 1
# Update user metrics
user_data = self.user_metrics[user_id]
user_data['last_active'] = time.time()
user_data['role'] = role
if request_type in user_data['requests']:
user_data['requests'][request_type] += 1
else:
user_data['requests']['other'] += 1
# Update time bucket for rate limiting
current_minute = int(time.time() / 60)
self.time_buckets[user_id][current_minute][request_type] += 1
# Clean up old time buckets (keep only last 10 minutes)
cutoff = current_minute - 10
for minute in list(self.time_buckets[user_id].keys()):
if minute < cutoff:
del self.time_buckets[user_id][minute]
def register_session(self, user_id: str, ip: str):
"""Register a new session for an IP address"""
self.ip_sessions[ip].add(user_id)
def unregister_session(self, user_id: str, ip: str):
"""Unregister a session when it disconnects"""
if user_id in self.ip_sessions[ip]:
self.ip_sessions[ip].remove(user_id)
if not self.ip_sessions[ip]:
del self.ip_sessions[ip]
def get_session_count_for_ip(self, ip: str) -> int:
"""Get the number of active sessions for an IP address"""
return len(self.ip_sessions.get(ip, set()))
async def is_rate_limited(self, user_id: str, request_type: str, role: str) -> bool:
"""Check if a user is currently rate limited for a request type"""
async with self.lock:
current_minute = int(time.time() / 60)
prev_minute = current_minute - 1
# Count requests in current and previous minute
current_count = self.time_buckets[user_id][current_minute][request_type]
prev_count = self.time_buckets[user_id][prev_minute][request_type]
# Calculate requests per minute rate (weighted average)
# Weight current minute more as it's more recent
rate = (current_count * 0.7) + (prev_count * 0.3)
# Get rate limit based on user role
limit = self.rate_limits.get(role, self.rate_limits['anon']).get(
request_type, self.rate_limits['anon']['other'])
# Check if rate exceeds limit
return rate >= limit
def get_metrics(self) -> Dict:
"""Get a snapshot of current metrics"""
active_users = {
'total': len(self.user_metrics),
'anon': 0,
'normal': 0,
'pro': 0,
'admin': 0,
}
# Count active users in the last 5 minutes
active_cutoff = time.time() - (5 * 60)
for user_data in self.user_metrics.values():
if user_data['last_active'] >= active_cutoff:
active_users[user_data['role']] += 1
return {
'uptime_seconds': int(time.time() - self.start_time),
'total_requests': dict(self.total_requests),
'active_users': active_users,
'active_ips': len(self.ip_sessions),
'timestamp': datetime.datetime.now().isoformat()
}
def get_detailed_metrics(self) -> Dict:
"""Get detailed metrics including per-user data"""
metrics = self.get_metrics()
# Add anonymized user metrics
user_list = []
for user_id, data in self.user_metrics.items():
# Skip users inactive for more than 1 hour
if time.time() - data['last_active'] > 3600:
continue
user_list.append({
'id': user_id[:8] + '...', # Anonymize ID
'role': data['role'],
'requests': data['requests'],
'active_ago': int(time.time() - data['last_active']),
'session_duration': int(time.time() - data['first_seen'])
})
metrics['users'] = user_list
return metrics