File size: 3,543 Bytes
a4da721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
def load_data(file):
    with open(file) as f:
        data = f.readlines()

    positions = []
    velocities = []
    for line in data:
        _, p, v = line.split("=")

        p = [int(x.split()[0]) for x in p.split(",")]
        v = [int(x) for x in v.split(",")]

        positions.append(p)
        velocities.append(v)

    return positions, velocities

def move(n_seconds, pos, vel, W, H):
    x, y = pos
    vx, vy = vel
    new_x = (x + vx * n_seconds) % W
    new_y = (y + vy * n_seconds) % H

    return (new_x, new_y)


def construct_grid(positions, W, H):
    grid = [[0]*W for _ in range(H)]

    for pos in positions:
        x, y = pos
        grid[y][x] += 1

    return grid

def pprint(grid):

    import copy

    grid_copy = copy.deepcopy(grid)

    for y in range(H):
        for x in range(W):
            grid_copy[y][x] = str(grid_copy[y][x]) if grid_copy[y][x] != 0 else "."

    grid_str = "\n".join(["".join(g) for g in grid_copy])
    print(grid_str)


def get_safety_factor(grid, H, W):
    middle_x = W // 2
    middle_y = H // 2

    quadrants = [[0,0], [0,0]]

    for y in range(H):
        for x in range(W):
            if x < middle_x and y < middle_y:
                quadrants[0][0] += grid[y][x]
            if x > middle_x and y < middle_y:
                quadrants[1][0] += grid[y][x]

            if x < middle_x and y > middle_y:
                quadrants[0][1] += grid[y][x]
            if x > middle_x and y > middle_y:
                quadrants[1][1] += grid[y][x]


    return quadrants[0][0] * quadrants[0][1] * quadrants[1][1] * quadrants[1][0]

    pass

# Part one
file = "input.txt"
W, H = 101, 103
positions, velocities = load_data(file)
n_seconds = 100

new_positions = []
for pos, vel in zip(positions, velocities):
    new_pos = move(n_seconds, pos, vel, W=W, H=H)
    new_positions.append(new_pos)

grid = construct_grid(new_positions, W=W, H=H)
print(get_safety_factor(grid, H=H, W=W))

# Part two

import time

file = "input.txt"
W, H = 101, 103
positions, velocities = load_data(file)
grid = construct_grid(positions, W=W, H=H)

row_0 = grid[0]
row_1 = grid[1]
row_2 = grid[2]


new_positions = []
n_moves = 750+980+320+257+300+230+200+500+140+312+3297
for pos, vel in zip(positions, velocities):
    new_pos = move(n_moves, pos, vel, W=W, H=H)
    new_positions.append(new_pos)
    positions = new_positions
grid = construct_grid(positions, W=W, H=H)
#  pprint(grid)
print(n_moves)

# A bunch of code that was used for debugging!

#      grid = construct_grid(positions, W=W, H=H)

#  new_positions = []
#  for pos, vel in zip(positions, velocities):
#      new_pos = move(260+139+403+209+473, pos, vel, W=W, H=H)
#      new_positions.append(new_pos)
#      positions = new_positions

#  row_tip = [0]*W
#  #  row_tip[50] = 1
#
#  n_seconds = 1
#  for N in range(n_seconds):
#      new_positions = []
#      for pos, vel in zip(positions, velocities):
#          new_pos = move(1, pos, vel, W=W, H=H)
#          new_positions.append(new_pos)
#
#      positions = new_positions
#
#      grid = construct_grid(positions, W=W, H=H)
#
#      if row_0 == grid[0] and row_1 == grid[1] and row_2 == grid[2]:
#          print("Repeat!!!!???!?", N)
#          break
#
#      #  if row_tip == grid[0]:
#      #      print()
#      #      print(N)
#      #      pprint(grid)
#      #      print()
#
#      #  if N % 100 == 0:
#      #      print(N)
#      pprint(grid)
#      print(N)
#      print()
#      print()
#      time.sleep(0.001)
    #  print(get_safety_factor(grid, H=H, W=W))