advent24-llm / evaluate.py
jerpint's picture
evaluate python functions on inputs
62f8b70
raw
history blame
4.4 kB
import os
import json
import subprocess
import pandas as pd
# from sklearn.manifold import TSNE
from generate import get_solution_file_path, all_models
from openai import OpenAI
import time
import os
import subprocess
client = OpenAI()
def evaluate_submission(day: int, model: str):
"""Evaluates the submission for the given day and model. Returns the result captured from stdout and the total time taken."""
# cd to the day directory
os.chdir(f"day{day:02d}")
# get the solution file path, check if it exists
file_path = get_solution_file_path(model=model)
if not os.path.exists(file_path):
print(f"File {file_path} does not exist, skipping")
return
else:
print(f"Evaluating {file_path} for day {day} with model {model}")
# run the solution, and capture the output
timeout = 60 * 5
start_time = time.time()
try:
result = subprocess.run(["python", file_path], capture_output=True, text=True, timeout=timeout)
print(f"Result: {result.stdout}")
except subprocess.TimeoutExpired:
result = subprocess.CompletedProcess(args=["python", file_path], returncode=1, stdout="", stderr="Timeout")
print(f"Timeout after {timeout} seconds")
end_time = time.time()
total_time = end_time - start_time
result = result.stdout if result.returncode == 0 else f"Error: {result.stderr}"
os.chdir("..")
return {
"result": result,
"total_time": total_time,
}
def get_solution_code(day: int, model: str) -> str:
"""Returns the solution code (as a string) for the given day and model."""
file_path = get_solution_file_path(day=day, model=model)
with open(file_path, "r") as file:
return file.read()
def extract_solutions(df, output_file = "solutions.json"):
# TODO: better way of getting this?
solutions = {}
for day in range(1, 25):
sub_df = df[(df.model == "jerpint") & (df.day == day)]
part1, part2 = sub_df.result.to_list()[0].strip("\n").split("\n")
solutions[day] = [part1, part2]
with open(output_file, "w") as f:
json.dump(solutions, f, indent=2)
return solutions
def evaluate_submissions(all_models, results_file = "results.csv", skip = True):
"""Runs the python code and collects their results"""
if os.path.exists(results_file):
df = pd.read_csv(results_file)
else:
df = pd.DataFrame(columns=["day", "model", "result", "total_time"])
# for day in range(1, 26):
for day in range(1, 11):
print("*" * 80)
print(f"Evaluating day {day}")
for provider in all_models:
for model in all_models[provider]:
print("-" * 80)
if df.loc[(df["day"] == day) & (df["model"] == model)].shape[0] > 0 and skip:
print(f"Skipping {provider} {model} for day {day} because it already exists")
continue
print(f"Evaluating day {day} with model {model}")
result = evaluate_submission(day, model)
df = pd.concat([df, pd.DataFrame({"day": [day], "model": [model], "result": [result["result"]], "total_time": [result["total_time"]]})], ignore_index=True)
df.to_csv("results.csv", index=False)
print("-" * 80)
print("*" * 80)
return df
if __name__ == "__main__":
all_models["human"] = ["jerpint"]
df = evaluate_submissions(all_models, results_file="results.csv")
# For now, only evaluate first 9 days
# TODO: All days
df = df[df.day < 10]
# Run once to save results
# solutions = extract_solutions(df)
with open("solutions.json") as f:
solutions = json.load(f)
def score_submissions(row):
result = row["result"]
day = row["day"]
solution = solutions[str(day)]
score_1 = solution[0] in result
score_2 = solution[1] in result
return [score_1, score_2]
df["scores"] = df.apply(score_submissions, axis=1)
df["part_1"] = df["scores"].apply(lambda x: x[0])
df["part_2"] = df["scores"].apply(lambda x: x[1])
for model in df.model.unique():
df_model = df[df.model == model]
silver_stars = df_model.part_1.sum()
gold_stars = df_model.part_2.sum()
total_stars = silver_stars + gold_stars
print(model, total_stars)